
Formal Methods in Computer-Aided Design 2022

Enumerative Data Types with Constraints
Andrew T. Walter

Khoury College of Computer Sciences
Northeastern University

Boston, MA, USA
walter.a@northeastern.edu

David Greve
Collins Aerospace

Cedar Rapids, IA, USA
david.greve@collins.com

Panagiotis Manolios
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA
pete@ccs.neu.edu

Abstract—Many verification and validation activities involve
reasoning about constraints over complex, hierarchical data
types. For example, distributed protocols are often defined using
state machines that govern the behavior of processes communi-
cating with messages which are hierarchical data types with state-
dependent constraints and dependencies between component
fields. Fuzzing, analyzing and evaluating implementations of such
protocols requires solving complex queries that pose challenges
to current SMT solvers. Generating fields that satisfy type
constraints is one of the challenges and this can be tackled using
enumerative data types: types that come with an enumerator, an
efficiently computable function from natural numbers to elements
of the type. Enumerative data types were introduced in ACL2s
as a key component of counterexample generation, but they do
not handle constraints such as dependencies between types. We
extend enumerative data types with constraints and show how
this extension enables applications such as hardware-in-the-loop
fuzzing of complex distributed protocols.

Index Terms—verification, data types, distributed systems,
fuzzing, counterexample generation, ACL2s

I. INTRODUCTION

The motivation for this paper stems from a project to ana-
lyze the IEEE 802.11 Wi-Fi protocol. Since the introduction
of the first IEEE 802.11 standard in 1997 [1], the Wi-Fi family
of protocols have become a key part of many user’s ability to
access the Internet. In 2019, Cisco predicted that over half of
global Internet traffic will be transmitted over Wi-Fi and over
20% of global Internet traffic will be transmitted over a mobile
network by 2022 [2]. Therefore, securing wireless networks
and their underlying hardware is of critical importance. One
method that researchers have used to demonstrate vulnerabili-
ties in the Wi-Fi protocol is fuzzing, a form of testing in which
generated data (possibly invalid) is input to a system, which
is monitored for crashes, nonconforming responses, or other
undesired behavior. Fuzzing has historically been successful
in testing software systems, but bringing it into the realm of
hardware raises several challenges.

Consider the general problem of validating the confor-
mance of a given hardware device to a wireless protocol
using hardware-in-the-loop fuzzing, where we have no inter-
nal knowledge of the device under test (DUT). In order to
obtain good coverage of such protocols, we have to force the
DUT into a variety of protocol states. Interesting protocols
are nondeterministic, so we cannot easily precompute a set
of messages to send; instead we must generate messages
dynamically, in response to actual messages received from the

DUT. Another complication is that protocols typically contain
complex constraints on the format and contents of messages,
making it infeasible to generate well-formed messages using
standard fuzzing techniques. Finally, we note that such hard-
ware devices are fast and associated protocols often involve
short timeouts, on the order of hundreds of microseconds.
Therefore, to effectively validate the protocol conformance of
such devices, we must generate well-formed messages at high
speeds.

The prevailing approach for message generation in scenarios
like the above has been the development of custom software
like Wifuzzit [3] and owfuzz [4]. Developing such software
takes a significant amount of highly specialized engineering
effort. A more general and powerful approach is to use formal
methods to model the protocol under which the DUT is being
tested and to then automatically generate protocol messages
from that model, using formal methods tools. Unfortunately,
current formal methods are not powerful enough to generate
messages of the required complexity and at the required rate,
as explained in detail later.

To address the above problem, we present enumerative data
types with constraints, an idea that enables the fast generation
of elements of hierarchical data types with constraints and
inter-field dependencies. Our work is a natural extension of
enumerative data types [5]: types that have enumerators,
functions from natural numbers to elements of that type. We
implemented the idea in the context of ACL2s [6], [7] and per-
formed an evaluation by generating certain messages described
in the 802.11 Wi-Fi protocol. Our evaluation shows that we
are able to generate messages for a wide variety of sizes,
something that neither SMT solvers nor pure enumerative data
types can do. For the classes of messages that can also be
generated by SMT or enumerative data types, our approach is
at least two orders of magnitude faster.

Our contributions are as follows. (1) The idea of enumera-
tive data types with constraints, which allows for the efficient
generation of elements of dependent types with constraints
and field interdependencies. (2) Extensions to the existing
enumerative data type framework in ACL2s to support lists
with length and ordering constraints, as well as improved
support of numeric ranges. (3) The evaluation of our ideas
with a case study on fuzzing Wi-Fi access points. All tools,
models and artifacts developed for the case study, including
sets of SMTLIB2-formatted constraints that may be useful

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 25 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-7588-263X
walter.a@northeastern.edu
david.greve@collins.com
https://orcid.org/0000-0003-0519-9699
pete@ccs.neu.edu
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_25
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_25
https://creativecommons.org/licenses/by/4.0/

(definec foo (x :int) :bool
(!= x (expt 2 63)))

(property (x :int) (foo x))
$>...
We falsified the conjecture. Here are
counterexamples:
--((X 9223372036854775808))

Fig. 1. A definition of a function and a property that ACL2s can find a coun-
terexample to, but QuickCheck cannot in an equivalent Haskell formulation
without the use of a custom generator.

for benchmarking SMT solvers will be publicly available [8].
(4) The idea of FM/hardware-in-the-loop for protocol confor-
mance testing, where formal methods are used in the loop
of a hardware-in-the-loop approach to protocol conformance
testing.

The paper is organized as follows. Section II discusses
related work in the areas of property testing, constraint-solver
aided test data generation, and Wi-Fi fuzzing. Section III
describes our extensions to enumerative data types and Sec-
tion IV describes the idea of enumerative data types with
constraints. A full, formal description is beyond the scope
of the paper, due to the complexity of the data definition
framework, but we have endeavored to present the ideas
in a way that experts will be able to adapt them to other
languages, type systems and tools. Section V discusses aspects
of the implementation relevant for our Wi-Fi fuzzing case
study, described in Section VI. Conclusions are presented in
Section VIII.

II. RELATED WORK

ACL2s (the ACL2 Sedan) [6], [7], is an extension of the
ACL2 [9], [10] automated theorem prover that includes a pow-
erful data definition framework (defdata) [5], a counterexam-
ple generation framework (cgen) for finding counterexamples
to conjectures [11]–[13], a power termination analysis based
on calling-context graphs [14] and ordinals [15]–[17] and IDE
support in the form of an Eclipse plug-in.

QuickCheck [18] is a tool for performing property-based
testing. It is emblematic of a family of tools that perform
property-based testing of program without considering the
formal semantics of those programs. Such tools are capable of
finding many bugs, but there are many incorrect properties that
they are highly unlikely to find counterexamples to without
specific direction from the user. The cgen framework of
ACL2s was inspired by QuickCheck and builds on it by
combining random generation with theorem proving. Fig. 1
highlights an example of a function and property that ACL2s
can find a counterexample to, but QuickCheck cannot in an
equivalent Haskell formulation.

ACL2s is able to find a counterexample in the Fig. 1 exam-
ple by making use of reasoning capabilities provided by ACL2.
Note that cgen was able to produce this result without any
property-specific configuration. cgen is successful because it
is able to benefit from ACL2’s process of transforming and
splitting up the property being tested into smaller pieces.

cgen also makes use of random testing during counterexample
search. This random testing is deeply entwined with ACL2s’
defdata data definition system for defining types [5]. cgen
will be discussed in more detail in Section III.

Constraint Solvers and Test Data Generation: Outside of
ACL2, many systems have been developed that allow the
combination constraint solvers with models or specifications
for the purpose of test data generation. The Alloy modeling
language and its analyzer [19] constitute one such system: see
Sullivan et al.’s framework for automated test generation in
Alloy [20] as well as Abdul Khalek et al.’s use of Alloy to
generate database management systems tests [21]. The Alloy
analyzer’s model-finding system differs substantially in ap-
proach from cgen—in particular, Alloy only supports bounded
verification, meaning that it considers only a finite subset
of all possible models, those with sizes in a user-provided
bound, when verifying or searching for a counterexample to
a property. Chamarthi et al. provide a detailed discussion of
the differences between cgen and Alloy in [12], including
that Alloy does not in general support recursive function
definitions.

Other purpose-built systems include PLEDGE [22] and
TAF [23]. Some of these systems attempt to generate test data
that satisfies some coverage criterion of the given model; this
is an interesting goal that is not described in this paper.

FuzzM [24] uses the JKind SMT-based model checker [25]
to generate test data for fuzzing systems modeled in the Lustre
programming language [26]. Depending on the complexity
of the model provided, FuzzM may make queries to JKind
that take a significant amount of time to solve. For this
reason, FuzzM provides a generalization technique known as
trapezoidal generalization [27] that can be used to generate
many test data from a single datum produced by a query to
JKind. Using trapezoidal generation with FuzzM can result in
a data generation rate increase of several orders of magnitude.

Wi-Fi and Fuzzing: The Wi-Fi family of protocols is
extensively used to provide local-area internet connections
in a wide variety of settings including homes, businesses,
and universities. Therefore, bugs and vulnerabilities in Wi-
Fi protocols and implementations thereof can have a wide
reach. For example, the 2017 KRACK attack [28] exposed
a vulnerability in the 4-way handshake described by the
802.11 standard, affecting nearly every Wi-Fi device on the
market at that time. The Wi-Fi protocols are based on the
IEEE 802.11 standard [1], which describes the MAC (medium
access control) and PHY (physical) layers of a network. We
concern ourselves here with the MAC layer. The 802.11
standard describes the binary format of MAC frames, a generic
overview of which is shown in Fig. 2.

Due to their prevalence, Wi-Fi protocols have previously
been subjected to hardware-in-the-loop fuzz testing by several
groups. In 2007, Laurent Butti and Julien Tinnés presented
a hardware-in-the-loop approach [29] fuzzing Wi-Fi client
drivers; this work resulted in the discovery of multiple bugs.
Butti’s 2007 system did not model the 802.11 MAC frame
specification, and it instead focused on generating fuzzed

190

Fig. 2. The binary layout of a generic 802.11 MAC frame. Figure taken from
the IEEE 802.11-2020 standard [1].

frame elements and using the Scapy library [30] to generate
packets with the appropriate structure that contain the fuzzed
elements. More recently, Vanhoef et al. [31] described an
approach for fuzzing access points’ implementation of the
802.11 Wi-Fi handshake in which an abstract model of the
Wi-Fi handshake is combined with test generation rules to
produce test cases. These test cases consist of a sequence
of abstract messages which are concretized into appropriate
MAC frames when executed. This approach was able to find
several vulnerabilities and quirks in the tested systems. In
2019, Garbelini et al. described their Greyhound system [32],
which uses a model of the 802.11 protocol to generate frames
that should drive the 802.11 client device into a particular
protocol state before sending a fuzzed frame. Using a protocol
model also allows Greyhound to analyze responses from the
client device to determine if the client’s responses comply
to the 802.11 protocol. None of the aforementioned works
regarding Wi-Fi fuzzing describe using theorem provers or
constraint solvers to generate test data from protocol models.
Based on our experience, we believe there would be a benefit
to using constraint solvers in Wi-Fi protocol fuzzing, but the
performance of existing approaches using constraint solvers is
insufficient for use in the context. We will touch on this topic
more in Section VI.

III. ENUMERATIVE DATA TYPES

The idea of enumerative data types was introduced by
Chamarthi et al. in the context of ACL2s and its defdata

framework [5], a rich data definition framework that allows
one to specify and reason about user-defined types. All
defdata types have predicative characterizations in the form
of recognizers, functions that recognize exactly the elements
of the type, as well as enumerative characterizations in the
form of enumerators, functions that, given a natural number,
return an element of the data type. Enumerators in ACL2s
are efficient, in part because they do not involve any theorem
proving. In this section, we provide a short overview of
defdata and present extensions to defdata that were added
to support our application. These extensions are publicly
available and formally verified using ACL2s.

The introduction of enumerative data types was partially
motivated by counterexample generation and satisfiablity solv-
ing. ACL2s automatically generates counterexamples to func-
tion definitions and conjectures using a synergistic combina-

tion of theorem proving and enumerative data types. Theorem
proving is used to decompose and simplify conjectures, at
which point counterexample generation algorithms use type
inference and enumerators to randomly generate elements
based on the types of the variables appearing in the conjecture.
In fact, counterexample generation in ACL2s uses enumerators
and theorem proving in a recursive fashion, e.g., after assigning
a value to a variable, theorem proving is used to propagate
consequences of the assignment, which may lead to further
decompositions and simplifications as well as stronger type
inferences, which are then exploited in further rounds of
enumeration and theorem proving [11]–[13]. Satisfiability
solving of ACL2s queries is performed similarly. This will
be discussed in more detail in Section IV.

The defdata framework includes a large collection of
built-in types. These types include basic types such as atoms,
symbols, characters, strings, numbers and Booleans. Subtypes
are supported and used extensively. Examples of subtypes
include standard, non-special characters, keywords, symbols
corresponding to variable names, and numeric types such as
rationals, complex rationals, non-zero rationals, positive ra-
tionals, negative rationals, non-positive rationals, non-negative
rationals, ratios (rationals that are not integers), positive ratios,
negative ratios, integers, non-zero integers, natural numbers,
positive integers, negative integers, non-positive integers, odd
integers, even integers and zero. List and association list (alist)
types, as well as non-empty versions, are also supported and
are included for built-in types. There is also a universal type
that includes all other types.

The defdata framework allows one to easily define new
types by providing support for singleton types, enumeration
types and range types (numeric ranges), as well as types
built out of existing types, such as product types, union
types, alias types, record types, list types, alist types, recursive
types, mutually recursive types and map types (finite partial
functions). The framework also allows one to define custom
types, e.g., to define the primes as a type, a user only needs
to define a recognizer and an enumerator and then register the
type. Custom types can then be used as if they were built-in
to construct new types.

Polymorphic functions are also supported by defdata, e.g.,
the form
(sig nth (nat (listof :a)) =>:a
:satisfies (< x1 (len x2)))

states that nth is a function that given a natural number and
a list of some type :a returns a list of type :a, as long as the
first argument (x1) is less than the length of the list (x2).

The defdata framework automatically generates theorems
in the form of various rules that ACL2s can use to reason about
types using techniques such as rewriting, forward chaining,
type reasoning, linear and non-linear arithmetic, as well as
various decision procedures; see [9] for an in-depth discussion
of the types of rules supported by ACL2. The framework
includes support for specifying and reasoning about subtypes,
e.g., it includes and generates subtype theorems for built-in

191

and user-defined types. It also generates auxiliary functions,
such as constructors and destructors, as appropriate.

Finally, the defdata framework includes numerous ad-
vanced features, e.g., it allows users to select different random-
ization schemes, to define custom enumerators and to switch
between enumerators dynamically.

We extended defdata by adding two libraries. The first
library, deflist, provides support for defining list types with
certain length and ordering constraints. The second library,
defintrange, provides improved support for numeric range
types over integers. The libraries are formally verified using
ACL2 and are publicly available.

The deflist library provides the defdata-list,
defdata-ordered-list, and defdata-list-rng forms,
which are used to define defdata lists whose length is
between two natural numbers, ordered lists with length con-
straints and lists with irregular length constraints, respectively.
Consider the following example, derived from our Wi-Fi
application:
(defdata-list SR8 SRType 1 8)

This defines the type SR8, which corresponds to lists whose
length is between 1 and 8 (inclusive) of elements of type
SRType, where SRType is a previous defined type recognizing
39 numbers between 2 and 236 that correspond to certain
supported rates, as specified by the Wi-Fi protocol. The above
form defines a recognizer and an enumerator for such lists.
A type corresponding to lists of SRType with no length
constraints is generated, if it does not already exist. Various
tables keeping track of data types are updated. Rules for
reasoning about lists of this type are also generated, e.g.,
forward-chaining, type-prescription, compound-recognizer and
rewrite rules that characterize the type and relate it to other
types are automatically generated. Rules for reasoning about
polymorphic functions and for controlling how the theorem
prover uses these rules are also generated. This form generates
a collection of forms totaling 7,944 lines and consisting of
434K bytes, all of which is formally verified by the ACL2
theorem prover.

The defdata-ordered-list form provides a similar
capability but also imposes the constraint that the list is
ordered. Consider the following example, derived from our
Wi-Fi application:
(defdata-ordered-list BO255 uint8 0 255)

This defines the type BO255, which corresponds to lists of
bytes (uint8) whose length is between 0 and 255 and whose
elements are in increasing order. This form generates all of the
forms that defdata-list generates, as well as rules for rea-
soning about the sorted lists. Finally, the defdata-list-rng
form is similar to the defdata-list form, but allows one
to specify irregular length constraints. Consider the following
example, derived from our Wi-Fi application:
(defdata-list-rng BTS uint8 (gen-skip 22 254 2))

This defines the type BTS, which corresponds to lists of bytes
(uint8) whose length is contained in the list of numbers

generated by the form (gen-skip 22 254 2), which in-
cludes the numbers 22, 24, . . . , 254. This form generates all
of the forms that defdata-list generates, specialized to the
irregular lengths.

The enumerators generated by the deflist library work by
selecting a length in the appropriate range and then generating
that many elements of the element type. This can be done very
efficiently. If there are ordering constraints, then the generated
list is sorted, using a verified sorting library we developed that
includes an efficient sorting algorithm and supports sorting
and potentially removing duplicates in the output. If duplicates
are not allowed by the type, then they are removed, but this
can result in lists whose length is shorter than desired. We
experimented with a version of the library that generated lists
of the appropriate length and where each such list had the same
probability of being selected (i.e., a uniform distribution), but
that turned out to be computationally expensive for long lists.
Therefore, once we sort the list and remove duplicates, we add
a pass where we add elements not already in the list until we
reach the target length. This turns out to be almost as fast as
the non-ordered case.

The second library, defintrange, provides defintrange
and defnatrange forms, which improved support for nu-
meric range types over integers and natural numbers. Consider
the following example, derived from our Wi-Fi application:
(defnatrange uint48 (expt 2 48))

This defines the type uint48 which corresponds to the natural
numbers less than 248. As was the case with deflist, we
generate enumerators and rules for reasoning about the type,
subtypes and polymorphic functions.

IV. ENUMERATIVE DATA TYPES WITH CONSTRAINTS

Complex data types often include type dependencies be-
tween fields. For example, consider a stack type which con-
tains a field corresponding to the length of the stack with
the type invariant that the value of this field is equal to the
length of the stack. Sometimes there are dependencies between
types, e.g., a function may require that it is provided with two
arguments, both of which are ordered lists of equal length. In
this section, we show how to extend enumerative data types
to support such constraints. The idea is relatively simple, but
very powerful. As we show in this paper, this extension enables
applications such as hardware-in-the-loop and theorem-prover-
in-the-loop fuzzing of distributed protocols.

As a simple motivational example, consider a record con-
sisting of n fields, f1, . . . , fn, each of which is a list whose
length is between 1 and 10 (inclusive). Before our work, an
enumerator for fi would generate a list of length l, with
1 ≤ l ≤ 10 with probability 1

10 . However, suppose that we
had a constraint that the size of the record, defined as the sum
of the lengths of the fields, is 10n. The probability of that
happening, using the defdata-generated enumerator, is 1

10n ,
which for large n is essentially 0. Or, suppose that we have a
dependent type where the lengths of the fields are required to
be equal. The probability of that happening is 1

10n−1 , which
is also essentially 0 for large n.

192

The idea of enumerative data types with constraints is
that we allow users to define types with parameters. These
parameters are associated with functions over the data types
and we require that, given values for these parameters, efficient
enumerators for the types can be defined. For example, con-
sider a list type with a parameter corresponding to the length
of the list; the associated function is just the length function.
Given a particular length, it is easy to generate a list of that
length by generating the required number of elements using
the enumerator for the element type. The next idea is to allow
users to define constraints over the parameters and associated
functions of types. If these constraints are over a decidable
fragment of logic, then enumeration winds up becoming a
two-stage process by which we find satisfying assignments
to the constraints, providing values for the parameters, which
are then used by the corresponding enumerators. Consider
the motivating example where we had fields f1, . . . , fn with
parameters p1, . . . , pn, corresponding to the field lengths. The
constraint that the size of the record is 10n gets turned into
a constraint that the sum of the lengths of the fields, is 10n
and this can be given to an SMT/IMT solver [33]–[35]. This
is a simple constraint, which in terms of the parameters is
p1+ · · ·+pn = 10n, and which only has one solution, namely
pi = 10. With the appropriate values for the parameters, we
can now call the enumerators for the fields of the record, which
will generate lists of the appropriate length, with probability 1.
In general, enumerators require solving a set of constraints and
then calling enumerators of component types, which may also
require solving a set of constraints, and so on, recursively.
As an optimization, recursive constraints associated with an
enumerator can be packaged into single queries during the
enumerator generation process, thereby minimizing the num-
ber of constraint-solving queries required by enumerators.

In our Wi-Fi application, and more generally in other verifi-
cation efforts, we want to determine the satisfiability of a set of
ACL2s constraints which include not only various data types,
but also other constraints arising from a variety of sources,
including coverage criteria, responses to messages from the
DUT, well-formedness constraints, protocol constraints and
modeling constraints. Queries to the underlying solver consist
of the maximal subsets of these ACL2s constraints that can
be expressed in the theory supported by the solver. If such a
query is unsatisfiable, so is the corresponding ACL2s query;
if the query is satisfiable, then we have values for the data
type parameters which can be used to efficiently (without
constraint solving) generate satisfying assignments to the
datatype variables. If there are any remaining constraints, they
are handled by the ACL2s counterexample generation process.

As we show later, we can formalize complex protocol
interactions using types. These types include fields that are
ordered lists over certain numbers, that have variable length
and optional fields and that include other complex dependen-
cies. Finding satisfying assignments to such types is difficult
for current SMT solvers, but easy when using enumerative data
types with constraints because we use constraint solving only
for the true dependencies; we then we use the enumerative

(solver-init)
(z3-assert (x :bool y :int z (:seq (:bv 3)))

(and x (>= y 5) (= (seq.len z) y)))
(check-sat)
$> ;; This is SAT, so we get a model:
((X T) (Y 5) (Z (0 0 0 0 0)))

Fig. 3. An example showing the use of our Common Lisp-Z3 interface.

characterization of defdata to generate assignments using
computation alone (i.e., no constraint solving).

V. IMPLEMENTATION

We implemented enumerative data types with constraints in
ACL2s, which provides support for defining tools on top of
ACL2s via “ACL2s systems programming” [36]. We used Z3
as the constraint solver, which required that we integrate Z3
with ACL2s. To this end, we developed a library allowing one
to easily call Z3 from Common Lisp. In this section, we will
describe both the Common Lisp-Z3 interface library, and how
we interacted with ACL2s.

Common Lisp-Z3 Interfacing: We decided to implement a
close integration of ACL2 and Z3, using the CFFI Common
Lisp library [37] to directly load Z3 into an ACL2s process
and interact with it using Z3’s C API. Such a close integra-
tion brings several benefits, including a low overhead when
interacting with Z3 and the ability to support Z3 features like
incremental solving. We developed our own Common Lisp
library that provides both a low-level interface with Z3’s C
API and a high-level interface that allows the user to add
assertions to Z3 using a syntax similar to that of ACL2s’
property macro. See Fig. 3 for an example showing the use
of our library. Our interface supports a broad swathe of Z3’s
features, including many of its built-in functions and types,
several kinds of user-generated types and incremental solving.

ACL2s Interfacing: Since our system is implemented using
the ACL2s systems programming paradigm, we are able to
write Common Lisp code that calls into ACL2s. Our system
starts inside the ACL2 read-eval-print loop (REPL), where
we load in the ACL2s model that we will pull enumerators
from. We then are able to exit from the ACL2 REPL into
the underlying Common Lisp REPL that our copy of ACL2
is built on top of, where we can load any Common Lisp
code that we might want, including our Common Lisp-Z3
library. To evaluate a function inside of ACL2—for example,
an enumerator for a defdata type—we first generate an S-
expression corresponding to the function call, and then pass
that S-expression to the appropriate function provided by
Walter et al.’s acl2s-interface library [38].

For our application, after running Z3 and getting back a
length for each element of the structure being generated, we
need to then generate elements with those lengths. Since each
variable-length element has a list type corresponding to the
set of bodies that it may have, we can make use of a special
kind of enumerator that ACL2s produces for list types. This
enumerator takes two arguments: the number of elements to
generate, and the random seed to use. To generate an element

193

of a list type with a particular length, we simply call the
enumerator with the desired length and an appropriate random
seed. We can then construct our structure from its constituent
parts by performing an appropriate ACL2s call.

VI. WI-FI MODEL CASE STUDY AND EVALUATION

We present an application of enumerative data types with
constraints to hardware-in-the-loop 802.11 wireless router
fuzzing. We focus on the problem of generating a particular
kind of 802.11 MAC frame, the probe request frame, as this is
already sufficiently complex to present the challenges in mod-
eling and frame generation. We first describe some challenges
that come with hardware-in-the-loop fuzzing before discussing
the probe request frame in more depth. We then discuss two
models of the probe request frame that we developed, the
first using Lustre and the second using ACL2s. We highlight
the key challenges that arose when developing the Lustre
model, and how we were able to use ACL2s to surmount
these challenges and produce a more concise model. We then
describe a system that implements enumerative data types with
constraints alongside the ACL2s model, and conclude with
experiments showing that our enumerative data type approach
is able to generate probe request frames at a significantly
greater rate and for a wider range of frame sizes than either
a pure constraint solving approach or a pure enumerative data
type approach.

Hardware-in-the-loop Fuzzing for Protocol Conformance

Fuzzing a hardware system like a wireless router brings with
it certain requirements on the fuzzer and fuzzing infrastructure.
The device under test (DUT) needs to be monitored, an
interface must be formed between the DUT and the fuzzer, and
in the case of protocol fuzzing, the fuzzer may be required to
adhere to timing constraints imposed by the DUT. The latter
constraint means that the performance of a fuzzer may not just
affect how long it may take to find a particular vulnerability,
but it may entirely preclude a fuzzer from use if it cannot
generate a fuzzed response to a message sent by the DUT
quickly enough.

The systems described below are intended to be one part of
a larger hardware-in-the-loop fuzzing system, an architecture
of which can be seen in Fig. 4. Each approach that we describe
contains two parts: a model describing the probe request frame,
and a fuzzer that uses the model to generate descriptions of
concrete 802.11 probe request frames given some additional
constraints on the size of the frame.

The Probe Request Frame

When a wireless device aims to connect to a 802.11 Wi-Fi
access point, it must first gather information on the capabilities
of wireless access points that are within range. To do this, the
wireless device first sends out a probe request message with
some basic information on its capabilities. Any Wi-Fi access
point that is within range and supports at least one of the
capabilities advertised by the wireless device will then respond
with a probe response message containing information about

Fig. 4. An overview of a hardware-in-the-loop fuzzing architecture

itself. The wireless device will then select an access point to
connect to and continue exchanging messages. The details of
this process are described in the IEEE 802.11 specification [1].
Here we concern ourselves with the MAC frame corresponding
to the probe request message.

The 802.11 specification states that every MAC frame
consists of three parts: a header, a body, and a frame check
sequence (FCS), which is a checksum for the previous two
parts. We will not discuss the header and FCS parts, as the
hardware-in-the-loop testing system can take care of setting
the header and FCS as appropriate.

A probe request frame body consists of a variable-length
sequence of elements, some of which are optional. Any
elements that appear must appear in a specified order relative
to each other. Elements typically contain a 1-byte “Element
ID” field that has a constant value for all elements of a
particular type, a 1-byte “Length” field that indicates the
number of bytes remaining in the element after the end of the
“Length” field, an optional 1-byte “Element ID Extension”
field, and a variable-length set of element-specific fields. In
this paper, we will consider the element-specific fields to all be
concatenated into one “Body” field. The size of a probe request
frame is the sum of the size of the MAC header (32 bytes)
and the sizes of all elements appearing in the frame body.
The 802.11 specification enumerates 33 element types for the
probe request frame body, and the constraints on valid values
for each element type vary widely. For example, the “DSSS
Parameter Set” element’s body is 1 byte long and should
specify the “Current Channel” that the device is using; the
set of valid values depends on the PHY implementation being
used as well as well as some other settings. The “Request”
element’s body has a more complicated constraint: it is a
variable-length list of bytes corresponding to “Element ID”s,
and the bytes must be listed in increasing order. As we will
see, such constraints are difficult to express in Lustre, and lead
to a lengthy specification.

The Lustre Model

Our first model of the 802.11 probe request frame was
developed using the Lustre programming language. When
modeling the probe request frame body specification, we chose
to abstract away some details of the specification in the interest
of focusing on aspects of the specification that are interesting

194

type RequestElementType = struct {
ElementID : byte ;
Len : byte ;
Body : byte[255] };

--Each element of the Body field is a byte.
node RequestElementTypeAssertions

(e: RequestElementType) returns (r: bool);
let
r = ...
(0<=e.Len) and (e.Len <=255) and
(0<=e.Body[0]) and (e.Body[0]<=255) and ...
(0<=e.Body[254]) and (e.Body[254]<=255);
tel
--The first Length elements of Body are
--sorted.
node RequestElementOrderedElementIDConstraint

(e: RequestElementType) returns (r: bool);
let
r =
((e.Len<1) or (e.Body[0]<e.Body[1])) and ...
((e.Len<254) or (e.Body[253]<e.Body[254]));

Fig. 5. A code snippet highlighting how an element containing a variable-
length sorted array of bytes is modeled in Lustre.

and representative. For example, we simply modeled the body
of the DSSS parameter set element as a byte. In general,
the Lustre model constrains the shapes of elements but not
their body values, which we believe is reasonable considering
the model is intended for use for fuzzing. That is, the Lustre
model specifies probe request frame bodies that are of valid
lengths and that have elements in the correct locations, but
does not constrain the exact values that the body of each
element may take to only those that are valid based on the
802.11 specification.

Lustre does not provide built-in support for bounded integer
types, which means that specifying that a field is a byte is
done by declaring that the field is an integer and that its
value is between 0 and 255 inclusive. This becomes even more
problematic when modeling variable-length arrays: to model
an array of bytes of length between 0 and 255, the Lustre
model specifies an array of length 255, specifies a variable
representing the length of the array and adds a constraint
for every element of the array stating that its value should
be between 0 and 255 inclusive. This means that 255 array
elements are always generated, and the system consuming
values generated from the Lustre model simply omits any
array elements that occur past the generated length value.
Specifying the “Request” element is even more verbose, since
in addition to the aforementioned constraints, 254 constraints
are generated to specify that if the length of the array is greater
than i, the element at index i − 1 in the array is strictly less
than the element at index i. See Fig. 5 for a snippet of the
Lustre model that defines a frame element with a variable-
length sorted array of bytes.

The Lustre model was used in conjunction with FuzzM to
generate probe request frames. FuzzM was not able to generate
assignments for certain frame sizes, as the SMT queries did
not produce results even given a timeout of many minutes.

;; A natural number less than 256
(defnatrange uint8 (expt 2 8))
;; a list of uint8s with a length in [0,255)
(defdata-list byte255 uint8 0 255)
;; a byte255 that is also strictly ordered
(defdata-ordered-list byte255-increasing uint8
0 255)
;; Sanity check: should always be able to find
;; a byte255 that is not a byte255-increasing
(must-fail (property (x :byte255)

(byte255-increasingp x)))
;; A type for the constant 10
(defdata exact10 10)
;; We model elements using records
(defdata RequestElementType
(record (ElementID . exact10)

(Body . byte255-increasing)))

Fig. 6. A snippet of the ACL2s model showing how an element containing
a variable-length sorted array of bytes is modeled. Also included are sanity
checks that do not appear in the Lustre model.

The ACL2s Model

We developed an ACL2s model based on the Lustre model.
The ACL2s model makes heavy use of defdata, which has
a much more powerful notion of types than Lustre. The
expressiveness of ACL2s allows us to more succinctly encode
the constraints imposed by the 802.11 standard. defdata has
built-in support for bounded integer types, making redundant
many of the constraints that had to be stated explicitly in
the Lustre model. We also used the extensions described in
Section III to define list types with length bounds and ordering
constraints. Fig. 6 shows all of the definitions necessary to
model the “Request” element in ACL2s with our extensions.

Another benefit of developing our model in ACL2s is that
we can include sanity checks inline with the model. ACL2s
will evaluate the checks when the model is loaded during
development, helping catch mistakes in the model specification
that may otherwise go undetected. These checks can include
validating that ACL2s can find a counterexample to a property
(as seen in Fig. 6) but also may include proofs or code
execution. If proofs are included, they may be used by ACL2s
to prove or generate counterexamples to future conjectures.
Even with sanity checks, the ACL2s version of the model has
roughly a quarter of the lines of code present in the Lustre
model.

Evaluation

We performed experiments to compare the performance of
three approaches to probe request frame generation: enumer-
ative data types using the ACL2s model and cgen (ACL2s-
ET below), enumerative data types with constraints using the
ACL2s model and an application-specific prototype of the
approach described in Section IV (ACL2s-ETC below), and
a pure constraint solving approach using a Z3-only version of
the Lustre model and Z3 (Z3 below).

We measured the performance of each approach when
queried for probe request frame bodies of various sizes,
including sizes for which no probe request frame body exists.

195

Z3 and ACL2s were both configured to timeout after 20
seconds. ACL2s was set to use the :uniform-random cgen

sampling method and was configured to terminate once it
found a single counterexample rather than the default three;
this brings its behavior more into line with Z3’s. All other Z3
and ACL2s settings were left in their default state. We provide
code for reproducing these experiments along with this paper.

Fig. 7 shows the number of query responses per minute for
each approach across a range of probe request frame body
sizes from 0 to 5000 bytes, sampled every 10 bytes. Five
trials were performed for each frame size for all approaches.
The number of query responses per minute for a particular
approach and probe request frame body size was calculated
by dividing the total number of queries made for that size that
resulted in definitive responses (e.g. not timeouts) by the total
amount of time in minutes spent on all queries for that size.

There are three regimes of frame size to discuss:
Small invalid probe request frame sizes (0-170 bytes): We
expected all of the approaches to perform well in this regime.
ACL2s-ETC consistently was able to determine UNSAT across
this range of sizes, and the Z3-only approach performed well
up to sizes of 150 bytes. ACL2s-ET was only able to determine
sizes up to 30 bytes were UNSAT; all of the other queries in
this regime resulted in timeouts. Note that Z3’s performance
begins to fall exponentially for frame sizes of 160 or greater.
Valid probe request frame sizes (180-2740 bytes): ACL2s-
ETC is consistently able to generate frames at a rate greater
than 1000 per minute, while ACL2s-ET is only able to
generate frames for a subset of the frame sizes at a rate
of at most 22 per minute and the Z3 approach is unable
to generate any frames with a size greater than 300 bytes.
The distribution of ACL2s-ET’s response rate (approximately
normally distributed around the average valid frame size of
1456 bytes) suggests that ACL2s is falling back on random
generation of frame bodies; that is, generating a frame body by
independently and randomly generating each element without
consideration of the frame size constraint. The exponential
drop in the Z3 approach’s performance suggests that Z3’s
search space grows exponentially with frame size.
Large invalid probe request frame sizes (2750-5000 bytes):
ACL2s-ETC is consistently able to quickly determine these
sizes are UNSAT, while ACL2s-ET can do so slowly but
consistently. The Z3 approach is always able to determine
UNSAT, though it was only able to do so in all of the
experimental trials in 100 of the 226 probe request frame
sizes sampled between 2750 and 5000 bytes. This highlights
inconsistency in Z3’s ability to determine UNSAT for large
frame sizes.

These results highlight the weaknesses of the Z3-only and
ACL2s-ET approaches. The Z3 approach was able to quickly
determine that small frame sizes are impossible and was
consistently able to generate frames with sizes up to 210
bytes. However, the proportion of trials that resulted in SAT
responses began to quickly drop after that point, and no SAT
responses were received for trials with valid packet sizes of
290 bytes or greater. The Z3 approach’s performance was

SAT UNSATSATUNSAT

1

10

100

1000

0 1000 2000 3000 4000 5000

frame size (bytes)

d
e

fi
n

it
iv

e
 r

e
s
p

o
n

s
e

s
 p

e
r

m
in

u
te

Approach ACL2s−ET Z3 ACL2s−ETC NA

Fig. 7. The number of frames generated per minute using each of the three
approaches when queried for frames with a given length. Only instances where
the model returned a definitive response (e.g. not “unknown” or “timeout”)
are shown. The two vertical lines represent the minimum frame size and the
maximum frame size; any responses outside of that range were all UNSAT,
and any within that range were SAT.

highly variable for determining that larger frame sizes are
impossible, and though it was inconsistent, it was always able
to show UNSAT in at least one of the five trials performed. It
is possible that an alternative encoding of the Z3 model (for
example, one that does not make use of Z3’s sequence types)
would perform better, but our experience in using the Lustre
model with FuzzM does not suggest a significant improvement
in performance.

The ACL2s-ET approach was consistently able to show that
large frame sizes are impossible, and was able to generate
frames for a wider range of frame sizes than the Z3 approach,
though it struggled to generate large or small frames and to
show that very small frame sizes are impossible. ACL2s is not
using information from the frame size constraints to guide its
counterexample generation in a meaningful way; cgen could
be modified to improve its effectiveness here.

VII. FUTURE WORK

This paper introduces the idea of enumerative data types
with constraints, or, equivalently, the idea of enumerative
dependent types. We believe that this idea will be useful
in many applications, e.g., those requiring the analysis and
verification of systems and models defined using dependent
data types. Such applications include property-based testing,
model-based development and distributed systems.

Below we provide a partial list of ideas for future work.
Formalizations and extensions: We plan on developing

and formalizing the theory of enumerative data types with
constraints for ACL2s and encourage others to develop similar
formalizations for other dependent type systems and inter-
active theorem provers. We suspect that there are numerous
interesting directions in which the basic approach can be ex-
tended to handle dependent logics of varying expressive power.

196

A specific extension of interest involves supporting relations
of arbitrary arity, not just predicates. Conceptually this is
straightforward: the relation can be turned into a predicate by
combining all of the relation’s arguments into a single value (a
tuple or a record). Then, our approach allows us to represent
and handle dependencies between the relation’s arguments. A
user can manually perform the conversion from relation to
predicate, but ideally this could be done automatically.

ACL2 integration: We plan to provide first-class support for
enumerative data types with constraints as part of the ACL2s
defdata framework, so that ACL2s users can benefit from
our work without needing to write custom code. Our proof-
of-concept implementation used for this paper’s evaluation
uses ACL2s systems programming [36] techniques and is not
integrated with ACL2s.

Optimizations: The ACL2s-ETC implementation evaluated
in this work was not optimized, and we are confident that
there are opportunities for both general and application-
specific performance improvements in our method. One such
optimization that we have experimented with in the context
of stateful protocols is to perform offline (pre-enumeration)
analyses of the protocol’s state machine to identify how to
efficiently explore interesting regions of the protocol’s state
space. This pre-analysis can significantly reduce the amount
of work needed at enumeration time to generate appropriate
responses to messages from the SUT. There are also interesting
questions regarding coverage metrics and “fair” explorations
that model analyses can help answer.

Model extraction: One limitation of our current work is that
it requires models that are described using dependent types. An
interesting question whether it is possible to provide automatic
techniques that are able to take existing models and annotate
them with the type information requires to use our work. This
line of research can include the use of AI techniques such as
Natural Language Processing (NLP) to automatically translate
legacy prose descriptions of protocols into formal models that
can be analyzed using our approach.

VIII. CONCLUSION

In this paper, we introduced the idea of enumerative data
types with constraints. This allows us to use formal-methods-
in-the-loop in the context of hardware-in-the-loop fuzzing for
conformance testing of distributed protocols. We presented
a case study where we modeled a portion of the IEEE
802.11 Wi-Fi specification and showed that we are able to
generate messages for a wide variety of sizes, something
that previous methods cannot do, thereby enabling the use of
formal methods in new applications. Interesting directions for
future work include adding such capabilities to other formal
methods tools and using enumerative data types to analyze
other distributed protocols.

Acknowledgments: This work was funded in part by
the United States Department of the Navy, Office of Naval
Research under contract N68335-17-C-0238. We thank Kristo-
pher Cory and Grant Foudree for their support.

REFERENCES

[1] “IEEE standard for information technology–telecommunications and
information exchange between systems - local and metropolitan area
networks–specific requirements - part 11: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications,” IEEE Std
802.11-2020 (Revision of IEEE Std 802.11-2016), pp. 1–4379, 2021.

[2] J. Thomas Barnett, S. Jain, U. Andra, and T. Khurana. Cisco
visual networking index (VNI) complete forecast update, 2017–2022.
Cisco Systems, Inc. Accessed on May 21st, 2022. [Online].
Available: https://www.cisco.com/c/dam/m/en us/network-intelligence/
service-provider/digital-transformation/knowledge-network-webinars/
pdfs/1213-business-services-ckn.pdf

[3] L. Butti. wifuzzit. [Online]. Available: https://github.com/0xd012/
wifuzzit

[4] E7mer. owfuzz. [Online]. Available: https://github.com/alipay/Owfuzz
[5] H. R. Chamarthi, P. C. Dillinger, and P. Manolios, “Data definitions in

the ACL2 sedan,” in Proceedings Twelfth International Workshop on the
ACL2 Theorem Prover and its Applications, ser. EPTCS, F. Verbeek and
J. Schmaltz, Eds., vol. 152, 2014, pp. 27–48.

[6] H. R. Chamarthi, P. Dillinger, P. Manolios, and D. Vroon, “The acl2
sedan theorem proving system,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2011, pp. 291–295.

[7] P. C. Dillinger, P. Manolios, D. Vroon, and J. S. Moore, “ACL2s:
“the ACL2 sedan”,” Electronic Notes in Theoretical Computer Science,
vol. 174, no. 2, pp. 3–18, 2007, proceedings of the 7th Workshop on
User Interfaces for Theorem Provers (UITP 2006). [Online]. Available:
https://doi.org/10.1016/j.entcs.2006.09.018

[8] A. T. Walter, D. Greve, and P. Manolios. Enu-
merative data types with constraints supporting material.
[Online]. Available: https://gitlab.com/acl2s/external-tool-support/
enumerative-data-types-with-constraints-supporting-material

[9] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided Reason-
ing: An Approach. Kluwer Academic Publishers, July 2000.

[10] M. Kaufmann and J. S. Moore, “ACL2 homepage,” 2022. [Online].
Available: https://www.cs.utexas.edu/users/moore/acl2/

[11] H. R. Chamarthi, P. C. Dillinger, M. Kaufmann, and P. Manolios,
“Integrating testing and interactive theorem proving,” in Proceedings
10th International Workshop on the ACL2 Theorem Prover and its
Applications, ser. EPTCS, D. S. Hardin and J. Schmaltz, Eds., vol. 70,
2011, pp. 4–19.

[12] H. R. Chamarthi and P. Manolios, “Automated specification analysis
using an interactive theorem prover,” in International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, P. Bjesse
and A. Slobodová, Eds. FMCAD Inc., 2011, pp. 46–53. [Online].
Available: http://dl.acm.org/citation.cfm?id=2157665

[13] H. R. Chamarthi, “Interactive non-theorem disproving,” Ph.D. disserta-
tion, Northeastern University, 2016.

[14] P. Manolios and D. Vroon, “Termination analysis with calling context
graphs,” in Computer Aided Verification, 18th International Conference,
CAV, Proceedings, ser. LNCS, T. Ball and R. B. Jones, Eds., vol. 4144.
Springer, 2006, pp. 401–414.

[15] ——, “Algorithms for ordinal arithmetic,” in 19th International Confer-
ence on Automated Deduction – CADE-19, ser. LNAI, F. Baader, Ed.,
vol. 2741. Springer–Verlag, July/August 2003, pp. 243–257.

[16] ——, “Integrating reasoning about ordinal arithmetic into ACL2,”
in Formal Methods in Computer-Aided Design FMCAD, ser. LNCS.
Springer–Verlag, November 2004.

[17] ——, “Ordinal Arithmetic: Algorithms and Mechanization,” Journal of
Automated Reasoning, vol. 34, no. 4, pp. 387–423, 2005.

[18] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for
random testing of Haskell programs,” in Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming,
ser. ICFP ’00. ACM, 2000, p. 268–279. [Online]. Available:
https://doi.org/10.1145/351240.351266

[19] D. Jackson, Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006. [Online]. Available: http://mitpress.mit.edu/catalog/
item/default.asp?ttype=2&tid=10928

[20] A. Sullivan, K. Wang, R. N. Zaeem, and S. Khurshid, “Automated test
generation and mutation testing for Alloy,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation, ICST
2017. IEEE Computer Society, 2017, pp. 264–275. [Online]. Available:
https://doi.org/10.1109/ICST.2017.31

197

https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://github.com/0xd012/wifuzzit
https://github.com/0xd012/wifuzzit
https://github.com/alipay/Owfuzz
https://doi.org/10.1016/j.entcs.2006.09.018
https://gitlab.com/acl2s/external-tool-support/enumerative-data-types-with-constraints-supporting-material
https://gitlab.com/acl2s/external-tool-support/enumerative-data-types-with-constraints-supporting-material
https://www.cs.utexas.edu/users/moore/acl2/
http://dl.acm.org/citation.cfm?id=2157665
https://doi.org/10.1145/351240.351266
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
https://doi.org/10.1109/ICST.2017.31

[21] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-
aware test generation using a relational constraint solver,” in 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008).

[22] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Practical constraint
solving for generating system test data,” ACM Transactions on Software
Engineering and Methodology, vol. 29, no. 2, apr 2020. [Online].
Available: https://doi.org/10.1145/3381032

[23] C. Robert, J. Guiochet, H. Waeselynck, and L. V. Sartori, “TAF: a
tool for diverse and constrained test case generation,” in 21st IEEE
International Conference on Software Quality, Reliability and Security
(QRS), Dec. 2021. [Online]. Available: https://hal.laas.fr/hal-03435959

[24] R. Coppa, G. Foudree, and D. Greve, “FuzzM: A model-based approach
to grey-box fuzzing,” Rockwell Collins, Tech. Rep., 2018. [Online].
Available: http://loonwerks.com/publications/pdf/coppa2018techreport.
pdf

[25] A. Gacek, J. Backes, M. Whalen, L. G. Wagner, and E. Ghassabani,
“The JKind model checker,” in Computer Aided Verification -
30th International Conference, CAV 2018, Proceedings, Part II,
ser. LNCS, H. Chockler and G. Weissenbacher, Eds., vol. 10982.
Springer, 2018, pp. 20–27. [Online]. Available: https://doi.org/10.1007/
978-3-319-96142-2 3

[26] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[27] D. A. Greve and A. Gacek, “Trapezoidal generalization over linear
constraints,” in Proceedings of the 15th International Workshop on the
ACL2 Theorem Prover and Its Applications, ser. EPTCS, S. Goel and
M. Kaufmann, Eds., vol. 280, 2018, pp. 30–46. [Online]. Available:
https://doi.org/10.4204/EPTCS.280.3

[28] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing
nonce reuse in WPA2,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
ACM, 2017, p. 1313–1328. [Online]. Available: https://doi.org/10.1145/
3133956.3134027

[29] L. Butti and J. Tinnés, “Discovering and exploiting 802.11
wireless driver vulnerabilities,” Journal in Computer Virology,
vol. 4, no. 1, pp. 25–37, 2008. [Online]. Available:
https://doi.org/10.1007/s11416-007-0065-x

[30] P. Biondi. scapy. [Online]. Available: https://github.com/secdev/scapy
[31] M. Vanhoef, D. Schepers, and F. Piessens, “Discovering logical

vulnerabilities in the Wi-Fi handshake using model-based testing,”
in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, R. Karri, O. Sinanoglu,
A. Sadeghi, and X. Yi, Eds. ACM, 2017, pp. 360–371. [Online].
Available: https://doi.org/10.1145/3052973.3053008

[32] M. E. Garbelini, C. Wang, and S. Chattopadhyay, “Greyhound: Directed
greybox Wi-Fi fuzzing,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 2, pp. 817–834, 2022. [Online]. Available:
https://doi.org/10.1109/TDSC.2020.3014624

[33] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Proceedings, ser. LNCS,
C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp.
337–340.

[34] P. Manolios and V. Papavasileiou, “ILP modulo theories,” in Interna-
tional Conference on Computer Aided Verification. Springer, 2013, pp.
662–677.

[35] P. Manolios, J. Pais, and V. Papavasileiou, “The Inez mathematical
programming modulo theories framework,” in International Conference
on Computer Aided Verification. Springer, 2015, pp. 53–69.

[36] A. T. Walter and P. Manolios, “ACL2s systems programming,” in
Proceedings of the Seventeenth International Workshop on the ACL2
Theorem Prover and its Applications, ser. EPTCS, 2022, to be published.

[37] J. Bielman and L. Oliveira. CFFI–the common foreign function
interface. [Online]. Available: http://common-lisp.net/project/cffi

[38] P. Manolios and A. Walter. ACL2s interface. [Online]. Available:
https://gitlab.com/acl2s/external-tool-support/interface

198

https://doi.org/10.1145/3381032
https://hal.laas.fr/hal-03435959
http://loonwerks.com/publications/pdf/coppa2018techreport.pdf
http://loonwerks.com/publications/pdf/coppa2018techreport.pdf
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.4204/EPTCS.280.3
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1007/s11416-007-0065-x
https://github.com/secdev/scapy
https://doi.org/10.1145/3052973.3053008
https://doi.org/10.1109/TDSC.2020.3014624
http://common-lisp.net/project/cffi
https://gitlab.com/acl2s/external-tool-support/interface

	Introduction
	Related Work
	Enumerative Data Types
	Enumerative Data Types with Constraints
	Implementation
	Wi-Fi Model Case Study and Evaluation
	Future Work
	Conclusion
	References

