
The Seventh AAAI Conference on Human
Computation and Crowdsourcing (HCOMP-19)

Gamification of Loop-Invariant Discovery from Code

Andrew T. Walter, Benjamin Boskin, Seth Cooper, Panagiotis Manolios
Khoury College of Computer Sciences

360 Huntington Avenue
Boston MA, 02115

{walter.a, boskin.b}@husky.neu.edu, se.cooper@northeastern.edu, pete@ccs.neu.edu

Abstract

Software verification addresses the important societal prob-
lem of software correctness by using tools to mechanically
prove that software is free of errors. Since the software ver-
ification problem is undecidable, automated tools have lim-
ited capabilities; hence, to verify non-trivial software, engi-
neers use human-in-the-loop theorem provers that depend on
human-provided insights such as loop invariants. The effec-
tive use of modern theorem provers requires significant ex-
pertise and recent work has explored the possibility of cre-
ating human computation games that enable non-experts to
find useful loop invariants. A common feature of these games
is that they do not show the code to be verified. We present
and evaluate a game which does show players code. Show-
ing code poses a number of design challenges, such as avoid-
ing cognitive overload, but, as our experimental evaluation
confirms, also provides an opportunity for richer human-
computer interactions that lead to more effective human-in-
the-loop systems which augment the ability of programmers
who are not verification experts to find loop invariants.

1 Introduction

Society is crucially dependent on software, which is used to
control critical infrastructure, medical devices, power plants,
trains, automobiles, planes, stock markets and sensitive data
such as medical and financial records. Bugs in software have
lead to deaths, the loss of massive amounts of money and
numerous security vulnerabilities (RTI 2002).

The field of software verification is concerned with tack-
ling the problem of erroneous software in a foundational
way, by proving that software is free of errors. This is done
with the aid of reasoning tools such as theorem provers,
interactive tools that help humans construct mechanically-
checked proofs. Theorem provers are capable of automat-
ically generating simple proofs, but since the verification
problem is undecidable, significant human interaction by ex-
perts is typically needed to effectively use such tools. A brief
overview of software verification appears in Section 2.

Recent work has shown that it is possible to create hu-
man computation games where non-expert players find loop
invariants that allow theorem provers to reason about pro-
grams that are too complex to automatically analyze. As dis-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cussed in Sections 3 and 4, these games are based on abstrac-
tions such as traces and do not show players code.

We challenge the assumption that showing code is a bad
idea. In fact, we propose that the opposite is true and to test
our hypothesis, we present a game where players are shown
code in Sections 5 and 6. Showing code can lead to cogni-
tive overload, and requires new kinds of human-computer
interfaces and interactions. We discuss how our game over-
comes these challenges, allowing it to give players with pro-
gramming experience, but no verification expertise, action-
able feedback. An in-depth evaluation of our game, in Sec-
tion 7, shows that our work leads to more effective human-
in-the-loop systems that significantly augment the ability of
non-experts to find loop invariants. For increased confidence
in our evaluation, we decided to implement our own ver-
sion of the state-of-the-art in loop invariant discovery games
(in Section 4). This allows us to account for differences in
player populations between our players and previous work,
determine if we can replicate previous results, enforce def-
initions, and use the same metrics and statistical tests. We
end with design insights, limitations, future work and con-
clusions. Our games are available for play online. 1

2 Software Verification

In this section, we present some key concepts and terminol-
ogy from the field of software verification, which will be
used throughout the rest of the paper. As a working example,
we use the program MULTIPLY, shown in Figure 1, which
takes two natural numbers as input and multiplies them to-
gether. The program is written in a Simple Imperative Pro-
gramming language (SIP), where the notation �A� denotes
that A is an invariant, a Boolean-valued expression that is
always true when program execution reaches it. �G� is the
guarantee, a statement that we expect to be true at the end
of the program, stating that res is the product of the inputs,
n and m. Guarantees are used to specify and characterize
program behavior: MULTIPLY is a program that given two
natural numbers, multiplies them.

One way to check MULTIPLY is to test it, but, as is well
known, while testing can reveal the existence of errors, it
cannot prove that no errors exist. The most foundational way

1See http://invgame.atwalter.com/dashboard1 and
http://invgame.atwalter.com/dashboard2.

188

Figure 1: MULTIPLY: Our running example program.

to reason about computation is to use formal methods, which
allow us to prove correctness. This task is in general un-
decidable, but software verification tools, such as theorem
provers, can be used to automate parts of the process.

One of the most difficult areas of software verification is
reasoning about loops (Gleiss, Kovács, and Robillard 2018).
The standard way of doing this is to use loop invariants, de-
noted �I� in program MULTIPLY, to characterize the behav-
ior of loops. A loop invariant is an expression that holds at
the start and end of every iteration of a given loop. An exam-
ple of a loop invariant for the while loop in MULTIPLY is
res=n*cnt: at every iteration of the loop cnt is increased
by 1, and res is increased by n. Loop invariants must be in-
ductive, which means:

• the expression holds at the initial entry of the loop, and

• if the expression is true at the beginning of an iteration
of the loop, and the loop condition is satisfied, then the
expression remains true after the loop body is executed.

The inductivity requirement for loop invariants is what al-
lows us to go from reasoning about unbounded program be-
havior to reasoning about bounded program behavior. For
example, we can prove that res=n*cnt is a loop invari-
ant, by verifying the above two conditions which only in-
volve reasoning about a bounded number of instructions.
The points marked �I� in MULTIPLY mark the points of the
program significant for inductivity: the start and end of a
loop iteration. The values of cnt and res are both 0 when
the loop begins, so res=n*cnt holds at the initial entry
of the loop. If res=n*cnt and the loop condition holds at
the first �I�, then res+n=n*(1+cnt) holds at the sec-
ond �I� (via simple algebra). In this way, we can show
that res=n*cnt is a loop invariant, so it holds when pro-
gram execution reaches �G�. Also notice that after a loop
finishes, its loop condition must be false. So, when the loop
of MULTIPLY is finished, both res=n*cnt and cnt>=m
hold. Unfortunately, res=n*cnt is not enough to prove
that MULTIPLY satisfies its guarantee. We also have to es-
tablish that at �G�, cnt=m holds, which requires a second
loop invariant, cnt<=m.

For the rest of this paper, when we say that some set of in-
ductive invariants proves the guarantee, or implies the guar-
antee, we mean that the conjunction of a) the types of the

variables in the program, b) the set of inductive invariants
and c) the negation of the loop condition, logically imply
that the guarantee holds. For example, we know that the fol-
lowing statements are true at �G�:
• res=n*cnt, cnt<=m (our loop invariants)
• cnt>=m (the negation of the loop condition)
Hence, we can prove that G (res=n*m) holds.

Loop invariants are useful because they characterize
a superset of the reachable states of a program that
may be realized at the start or end of any loop it-
eration using any input, where a state is an assign-
ment of type-preserving values to program variables.
For MULTIPLY, an example of a reachable state is
n=2, m=3, cnt=2, res=4. An example of a non-
reachable state is n=2, m=2, cnt=3, res=5. We can
determine that this state is not reachable using the inductive
invariant res=n*cnt, which says that at every loop iter-
ation, res is a multiple of n. Notice that, in general, not
every state that satisfies a set of loop invariants is reach-
able, e.g., the state n=2, m=3, cnt=-2, res=-4 sat-
isfies the loop invariants, but is not reachable (notice that
cnt, res are of type int). This indicates that we can
strengthen the set of loop invariants until we obtain the
strongest set of loop invariants, which exactly characterize
the set of reachable states.

Not every invariant is inductive, e.g., ¬(cnt < m) ⇒
(res=n*m) is an invariant that holds when program exe-
cution reaches �I�, and can be used to prove G, but it is
not inductive and hence not a loop invariant. Coming up
with loop invariants requires insight and is difficult for mod-
ern theorem provers, but perhaps regular programmers are
better able to discover interesting loop invariants. On the
other hand, checking loop invariants is something that mod-
ern theorem provers are good at, allowing us to automate
the proofs, which is not something regular programmers are
trained to do.

Many fine textbooks provide an in-depth overview of for-
mal methods and software verification (Kaufmann, Mano-
lios, and Moore 2000; Bradley and Manna 2007; Dijkstra
and Scholten 2011).

3 Related Work in Games

Early work in games dealing with invariants explored dif-
ferent representations of program execution traces and other
program elements. These representations were selected to
present a more game-like experience, hiding numbers and
code, while still asking players to use these representations
to help discover invariants or prove properties of the code.
Xylem (Logas et al. 2014; 2015; Dean et al. 2015) pre-
sented traces to players as plants and flowers, also ask-
ing them to discover loop invariants. StormBound (Dean
et al. 2015) presented traces as collections of magic sym-
bols and runes. Binary Fission similarly had players work
with invariants, but through a higher-level sorting inter-
face informed by an automated system (Fava et al. 2016;
Dean et al. 2015). Monster Proof (Dean et al. 2015) pre-
sented information as cartoon monsters. These games all
made the design decision to hide the code from the players

189

Figure 2: Trace Version of the Invariant Discovery Game

and rely primarily on the presentation of program elements
as game pieces.

InvGame is the most recent and effective game for in-
variant discovery; empirical evaluation showed that players
were able to solve several benchmark problems that were
unsolved by leading fully-automated tools (Bounov et al.
2018). InvGame is a puzzle game that challenges players
to help prove properties of short pieces of code containing
loops. InvGame exposes numerical information about the
underlying program by showing the player traces of program
execution. Players are asked to enter mathematical expres-
sions that hold true for all entries in the trace. These expres-
sions may turn out to be loop invariants that can be used to
prove guarantees. Similar to prior games, InvGame hides the
code (as well as the guarantee) from players, relying on the
trace to give players enough information about the program.
The authors of that tool claimed that hiding code and only
showing traces “reduces cognitive burden and ... can allow
non-experts to achieve expert tasks.” 2

4 Discovering Invariants from Traces

The fundamental difference between our Invariant Discov-
ery Game (IDG from now on), and InvGame, the state-
of-the-art in gamified invariant discovery, is that IDG
shows both the program and guarantee to the player, while
InvGame abstracts these components of the problem away.
In order to effectively compare IDG to InvGame, we cre-
ated IDG-T, our own version of InvGame, which has a sim-
ilar user interface and data collection model to IDG. By us-
ing the same metrics, player population, definitions, analysis
tools and backend solvers for both games, we can fairly eval-
uate the merit of showing code as a gamification strategy and
whether or not the resulting cognitive overhead is justified.

User Interface

In Figure 2, we show a screenshot of the IDG-T game, which
essentially mirrors the InvGame layout, aside from cosmetic
differences. In this section we discuss the purpose of each
screen component, numbered 1 through 6. Every component
in the IDG-T screen has a counterpart in the IDG screen,

2Two days before the camera-ready manuscript submission
deadline, we discovered FlowGame, a game for loop invariant
discovery that also shows code (Bounov 2018). Our work and
FlowGame were developed independently.

where the IDG counterpart has possibly become interactive
(as described in Section 6).

The key component in IDG-T is the Trace Window (1),
which displays the result of running a (hidden) program on
a single, unchangeable, input. The rows reflect the result of
printing every local variable, at each iteration of the loop, as
well as at the end of the loop. Next, we have the Accepted
Expressions box (2). This is where all the expressions pro-
posed by the player and accepted by the game are accumu-
lated. Players enter expressions in the Entry Box (3). There
are three requirements which an expression must satisfy in
order to be accepted. An expression must be true at every
row of the trace, cannot be a tautology and cannot be im-
plied by the conjunction of the other expressions that have
already been accepted. If an expression is rejected a succinct
explanation is provided.

Finally, because the expression language includes poten-
tially unfamiliar Boolean and arithmetic operators, we pro-
vide an Expression Reference (4), where players can read
definitions of the meanings of each symbol available, which
mirrors a similar feature of InvGame.

Gamification

There are several features of IDG-T which help establish it
as a gamified (Deterding et al. 2011) approach to loop in-
variant discovery, including the scoring system, tutorials and
levels. The Score Panel (5) lets players see their progress on
the level being displayed, as well as their total score across
all attempted levels. Players can receive two types of points:
coins and gems. A player receives coins when they submit
an expression that is accepted; this is intended to be a fre-
quent source of positive reinforcement for players. A player
receives gems when they complete a level, either by sub-
mitting 6 accepted expressions or submitting loop invari-
ants that imply the guarantee. Each level is worth a differ-
ent amount of gems and coins depending on its difficulty.
The tutorials for both IDG-T and IDG are videos, where an
expert player plays the game, explains the game features,
describes his thinking process, explores different strategies
and shows how to complete one level. Finally, we give play-
ers the ability to reset and skip levels (6), so that players
who want to explore or get frustrated with a level and want
to move on, can freely do so.

5 Limitations of Traces

A single trace can convey a significant amount of informa-
tion about a program and is a useful abstraction that allows
players to discover invariants. There are, however, several
issues in current games that arise when traces are the only
information available to players. The root of the problem is
that the trace abstraction is lossy because there are an in-
finite number of programs that can produce a given trace.
This leads to a sizable semantic gap between the reward
system in trace-based games and the underlying goal of in-
variant discovery, a gap that players can easily exploit to
cheese these games i.e., to use tactics that make it easy to
make game progress without providing any useful invari-
ants. The goal of gamification is to design games which elicit

190

the desired behavior from players: ideal gamifications are
cheesing-resistant. Unfortunately, there are several cheesing
strategies that can be used with trace-based games.

Trace-specific expressions

The first cheesing strategy is to submit expressions which
are trace specific. Consider the trace (1) shown in Figure 2,
which is for the multiplication program shown in Figure 1,
where the inputs n and m are 6 and 7. Now consider the
expressions n=6, n�=0, m=7 and cnt<=7, none of which
are invariants (inductive or otherwise), but all of which hold
for the trace. Since the trace abstraction does not identify
input variables, players have no idea that n and m are inputs
whose values can be any natural number. Therefore, these
games give players credit for such expressions, even though
they are clearly of no help to the verification process. Finally,
notice that players may be unaware that they are cheesing
the game, because there is a sizable semantic gap between
the reward system in the trace game and the underlying goal
of invariant discovery.

Backward redundancy checking

The order in which expressions are submitted can be used
to cheese trace-based games. When a new expression is sub-
mitted, checks are performed to ensure that the new expres-
sion is not subsumed by the already accepted expressions.
Consider the following sequences of proposed expressions:

1. cnt >= -2, 2. cnt >= -1, 3. cnt >= 0

1. cnt >= 0, 2. cnt >= -1, 3. cnt >= -2

When the expressions in the first line are submitted all ex-
pressions are accepted, although the last expression implies
the rest. When the expressions in the second line are submit-
ted, however, only the first expression is accepted; the rest
are rejected because they are subsumed. If the only way to
complete a level is to prove the guarantee, this is not an is-
sue: redundant expressions cannot help players at all. When
players can complete levels by only providing a finite num-
ber of useless expressions, as is the case in InvGame, this
becomes a problem, as players can pick a variable, find the
minimum value it has in the trace and can then easily gen-
erate an arbitrarily long sequence of incrementally stronger
expressions. One might consider adding backward redun-
dancy checks, but that would make the game seem arbitrary
because players could make “negative progress” by submit-
ting a strong expression that subsumes several of their pre-
viously submitted expressions.

Inductivity

A final issue is that concepts such as inductivity are out-of-
scope, because the location, loop condition and body of the
loop in question have been abstracted away. For example,
consider the expression res<=n*m. This does, in fact, hold
for all reachable program states, but proving that it is an in-
variant requires other inductive invariants. In general, play-
ers may submit expressions that are invariants but which do
not help prove program correctness because they are not in-
ductive. Trace-based games are not able to provide players
with meaningful feedback in such situations, which leads to

a space of acceptable expressions that is much larger than
the space of expressions which are actually helpful for prov-
ing correctness. As the simplest acceptable expressions tend
not to be the expressions which are useful for proving cor-
rectness, only a fraction of player effort is useful in tackling
the underlying software verification problem.

6 Invariant Discovery Game

Having shown the limitations of invariant discovery games
based on traces, we turn our focus to IDG, where players are
shown code and guarantees. Key verification concepts such
as input variables, types, program structure, loop invariants
and guarantees become transparent entities which can be re-
ferred to by the player and the game. Resolving the chal-
lenges that arose from the decision to show code enabled us
to design a game with more sophisticated gameplay flow and
increased interactivity. The design balanced the competing
goals of providing as much actionable information as possi-
ble while minimizing cognitive overhead and technical jar-
gon. By showing players program behavior not covered by
existing invariants, our game helps players discover invari-
ants, leading to a higher rate of successful proof attempts, as
shown in Figure 4. Our evaluation provides compelling ev-
idence that showing code in verification games is worth the
increased cognitive overhead, as it leads to more effective
human-in-the-loop verification systems.

User Interface

Now, we describe the user interface of IDG, shown in Fig-
ure 3, describing changes made to the features present in
IDG-T (components 1-6) and the new features (components
7-9). The changes are to facilitate a player’s understanding
of the feedback that they receive and to enable players to ex-
plore the program. Code is shown in the code window (7)
and the guarantee (9) is shown separately, below the pro-
gram text. Highlighting the guarantee helps focus players
on this objective. The message window (8) is where players
receive actionable feedback regarding the expressions they
submitted, typically consisting of a concrete program state
showing players program behavior not characterized by the
current set of invariants. In order to help players build an ac-
curate mental model of the critical program points used to
judge invariants, we incorporated supplemental visual stim-
uli to the message window in the form of arrows which point
from the message window to the points in the program rel-
evant to that message. The arrows are colored if they corre-
spond to a location where a proposed expression, the guar-
antee, or loop condition, holds (green) or doesn’t (red). Oth-
erwise, arrows are black. These arrows help to both explain
the feedback players receive and to further reinforce unfa-
miliar verification concepts.

As in IDG-T, there are references to the symbols that
players can use in expressions (4a), as well as to forms
that appear in programs (4b). In addition, any technical
terms used in feedback messages can be hovered over, which
shows a short definition. These definitions can remind play-
ers of the content of the tutorial video and are a good way of
teaching players about loop invariants while they play.

191

Figure 3: Code Version of the Invariant Discovery Game

The remaining features of IDG allow players to more fully
explore the program’s state space. One key change is that in
IDG, the trace window (1) is an interactive component, al-
lowing players to enter inputs and generate traces. This ca-
pability gives players access to all reachable program states.

Gameplay and Invariant Categorization

IDG is a human computation game that consists of a
sequence of interactions between a player and a rea-
soning engine, which is based on the ACL2s theorem
prover (Chamarthi et al. 2011; Chamarthi and Manolios
2019). The reasoning engine presents a program state which
satisfies all of the player’s accepted invariants but is a coun-
terexample to the claim that the program satisfies the guar-
antee. The player responds by providing a loop invariant that
rules out this counterexample. Since all of the programs used
in the game satisfy their guarantees, it is always possible to
make progress. This process is repeated until the player pro-
vides enough loop invariants to prove the guarantee. A full
description of the reasoning engine is beyond the scope of
this paper, but we provide a player-level overview.

There are several fundamental categories of proposed in-
variants. We start by describing the useless categories. Pro-
posed invariants may have reachable counterexamples. If the
existing trace provides a counterexample, players get imme-
diate feedback: the rows consisting of counterexamples are
shown in red. Otherwise, the reasoning engine generates a
new trace showing why the proposed expression is not an
invariant. Proposed invariants may be tautologous, so they
do not add any information and cannot help prove the guar-
antee. In such cases, a useful explanation is provided to the
player. Proposed invariants may be implied by the existing
inductive invariants, so they also do not add any information
and a useful explanation is provided to the player. All of
these useless invariants are discarded and the player, armed
with new information, is asked to propose a new invariant.

Proposed invariants which are not useless and which can
be proven inductive when conjoined with existing inductive
invariants are added to the Inductive Invariants window (2b).
Expressions for which neither of the above cases apply are
added to the Potential Invariants window (2a). Potential in-
variants may get promoted to inductive invariants as new in-
ductive invariants are discovered. Recall that we check in-
ductivity by conjoining all known inductive invariants, so as
the set of inductive invariants increases, we identify and pro-

mote all promotable potential invariants. Finally, a new in-
ductive invariant may subsume existing invariants, in which
case we report this to the player and remove the redundant
invariants (in an effort to minimize the player’s cognitive
load). If the removed invariant was inductive, it is called an
displaced inductive invariant; otherwise if it was potential it
is called a redundant invariant. After a newly proposed in-
variant is processed, we check if the current level has been
completed, by checking whether the known inductive invari-
ants imply the guarantee. All of the reasoning is done by the
reasoning engine, so players never see proofs, nor are they
expected to understand proofs. If the level has not been com-
pleted, a new counterexample is generated by the reasoning
engine and shown to the player.

Players can click on any buttons labeled with a ? to ex-
plore a level. Clicking on the button appearing next to the
guarantee (9) produces a counterexample to the claim that
the conjunction of the player’s inductive and potential in-
variants imply the guarantee, if such an example exists. Such
counterexamples have high utility. Their existence indicates
that more invariants are definitely needed. In addition, these
counterexamples provide players with a high-quality imme-
diate goal, which is to propose a new invariant that rules out
the counterexamples. Clicking on a button in (2a) appearing
next to a potential invariant, say p, provides counterexam-
ples to the claim that p, conjoined with the current set of
invariants, is inductive. Two states are produced in this case.
The first state satisfies all of the invariants and the loop con-
dition. The second state is produced by executing the body
of the loop and violates p, showing that if the first state is
reachable, then p is not inductive. Players use such coun-
terexamples to generate expressions that when conjoined
with existing invariants are strong enough to be inductive.

To summarize, the reasoning engine continuously chal-
lenges the player to find invariants, relationships between
the program variables, that bound the set of known reachable
states until we have enough bounds to establish the guaran-
tee. So, the player provides insight and the reasoning engine
turns this insight into (unseen) proofs.

Gamification

The key features of IDG which establish it as a gamified
(Deterding et al. 2011) approach to loop invariant discov-
ery include the features of IDG-T, using the same scoring
system, tutorials and discrimination of levels, but also in-
clude interactive interfaces and a richer game-flow consist-
ing of actionable, interactive feedback provided by the anal-
ysis engine in response to player actions. IDG uses the same
two-tier point system as IDG-T, where accepted invariants
lead to coins, and level-completions lead to gems. The dif-
ference, however, is that the only way to complete a level
is to provide invariants whose conjunction implies the guar-
antee, which means that the user’s gem count reflects the
value of the discovered invariants and is not susceptible to
the cheesing attacks of trace-based games. The game-flow
of IDG attempts to minimize the time players spend uncer-
tain of what to do next. Since players are not expected to
understand formal methods, the reasoning engine generates
concrete states and messages that provide players with im-

192

Difficulty Proved by game?
Program Name InvGame IDG-T IDG InvGame
multiply - tutorial � � -
mult-by-1000 nl-eq-3 easy � � �
square-times-2 nl-eq-1 easy � � �
square-times-const nl-eq-2 easy � � �
cube cube-1 medium � � �
mult-by-add nl-ineq-4 medium � � �
summation gauss-1 medium � � �
summation2 gauss-2 medium � � �
binary-product prod-bin hard � � �
cube2 cube-2 hard � � �
int-square-root sqrt hard � � �
mult-of-6 - hard � � -

Figure 4: Benchmark programs. � indicates that the level
was not proved by an individual player, but was proved col-
lectively.

mediate subgoals, playing the role that road signs, objects,
or insightful characters play in conventional video games.

7 Evaluation

In this section, we describe the experimental setup for our
evaluation of IDG. The major criteria we use when compar-
ing IDG with IDG-T are: (a) number of levels proved, (b) the
ratio of the number of users who proved a level to the num-
ber of users who loaded it, (c) the distribution of submitted
expression types, (d) cheesability, (e) player skill data, and
(f) player feedback.

Experimental Setup

Programs Used Many of the benchmark programs we
used were derived from programs used to evaluate InvGame
(Bounov et al. 2018). We included all 4 of the programs
that InvGame players were unable to prove guarantees of,
as well as representatives from each class of program (such
as CUBE, NL-EQ and NL-INEQ). There were, in addition, two
new levels: MULTIPLY, the running example for this paper,
and MULT-OF-6, which computes the sum of the squares
of the first n natural numbers. For programs derived from
InvGame, the name of the corresponding InvGame program
name is displayed in the InvGame column in Figure 4.
These programs were shown to be “unsolved by leading
[software verification] tools” in Bounov et al. (2018).

Each benchmark program consists of variable initializa-
tions followed by a loop, in which variables are updated
using arithmetic operations and conditionals. The InvGame
programs were slightly modified to include print statements
and to rename some variables.

Mechanical Turk We ran our experiment on Amazon Me-
chanical Turk and recruited 300 players. The task descrip-
tion contained the text “PROGRAMMING EXPERIENCE
REQUIRED” in a large font.

Each task consisted of the tutorial video, the tutorial level,
1 randomly selected easy level and a random permutation of
2 medium and 2 hard levels. Upon completing the consent
form, each player was randomly assigned to either IDG or
IDG-T. The probabilities with which each game variant was

IDG IDG−T

m
ult

ipl
y

m
ult

−b
y−

10
00

sq
ua

re
−t

im
es

−2

sq
ua

re
−t

im
es

−c
on

st
cu

be

m
ult

−b
y−

ad
d

su
m

m
at

ion

su
m

m
at

ion
2

bin
ar

y−
pr

od
uc

t

cu
be

2

int
−s

qu
ar

e−
ro

ot

m
ult

−o
f−

6

m
ult

ipl
y

m
ult

−b
y−

10
00

sq
ua

re
−t

im
es

−2

sq
ua

re
−t

im
es

−c
on

st
cu

be

m
ult

−b
y−

ad
d

su
m

m
at

ion

su
m

m
at

ion
2

bin
ar

y−
pr

od
uc

t

cu
be

2

int
−s

qu
ar

e−
ro

ot

m
ult

−o
f−

6

0.00

0.25

0.50

0.75

1.00

pr
ov

e
ra

tio

Max skill level 5 4 3 2

Figure 5: Ratio of the number of users who proved a level to
the number of users who loaded it, broken down by the max-
imum of the player’s self-reported programming and math
skill levels.

assigned were tweaked over the course of the study in order
to ensure sufficient attempts of each level for both games.

Players received a $2.00 base payment for completing the
end-of-game survey, which they could access at any point.
Players also received a $0.80 bonus per completed level (in-
cluding the tutorial). We included the bonus to incentivize
players to attempt levels, while the base payment was in-
tended to ensure that players who put in effort but were un-
able to complete any levels were compensated for their time.
The survey included a question about programming expe-
rience with the options “None,” “Novice,” “Intermediate,”
“Advanced,” “Professional” and a question about the high-
est level math course taken, with the options “Middle school
or less,” “High school,” “Bachelors,” “Masters” and “PhD.”
Skill levels are assigned numbers, with the lowest skills as-
signed the value 1. A player’s max skill level is the maxi-
mum of their programming and math skill levels.

Experimental Comparison of IDG and IDG-T

The data presented here only includes those players who
completed at least one level. The tutorial video walks players
step-by-step through the solution of the tutorial level, which
players then immediately play. To satisfy the condition to be
included in the data analysis, players only had to repeat the
steps shown in the tutorial video. However, of players who
accepted the consent form, only 16.4% of IDG players and
51.5% of IDG-T completed a level. This may be due to par-
ticipants trying to cheese Mechanical Turk, as 52.2% of IDG
and 22.8% of IDG-T players accepted the consent form but
did not even load a level.

Data Analysis Notes The “Chi-squared test” discussed
below is R’s built-in “Pearson’s Chi-squared test”. If Yates’
continuity correction is applied, it is noted. The reported
effect size for Pearson’s Chi-squared tests is Cramer’s V,
as calculated by R’s lsr package (Navarro 2015). A Holm

193

correction was applied whenever multiple Chi-squared tests
were performed on the same data. The “Wilcoxon rank
sum test” discussed below is an “Exact Wilcoxon-Mann-
Whitney Test” computed using R’s coin package (Hothorn
et al. 2006). The effect size for Wilcoxon rank sum tests dis-
cussed below is computed as Z/

√
n.

Terminology We use the following definitions to charac-
terize progress in completing levels:
• loaded: the player loaded the level’s page
• attempted: the player submitted at least one expression

that is not disproved by the current trace
• completed: the player received a gem for the level, i.e.,

they proved the level or, for IDG-T, they submitted 6 ac-
cepted expressions

• proved: the player’s invariants are sufficient to prove the
guarantee (coincides with completed for IDG)

• proved collectively: the conjunction of the invariants of all
players for that level is sufficient to prove the level, but the
level is not proved by any individual player

Principal Experiments Figure 4 shows which levels were
proved by players of InvGame, IDG-T and IDG. The
only level that IDG players were unable to prove was
SUMMATION, which was also not proved in IDG-T, but
was proven in InvGame (by a single player). We believe
that the main reason why this level was not proved is the
small number of attempts: 7 IDG players attempted it. In
addition to SUMMATION, IDG-T players were not able to
prove INT-SQUARE-ROOT or MULT-OF-6. SUMMATION2
and CUBE2 were proved collectively.

Since IDG-T is our implementation of InvGame, we ex-
pected that the two games would have similar outcomes,
but of the 10 levels that InvGame and IDG-T shared, they
differed on 6 of them. IDG-T was more effective in the
sense that its players were able to prove more levels and
IDG-T players proved 4 levels that InvGame players did not,
whereas InvGame players proved 2 levels that IDG-T play-
ers did not. The differences between the outcomes of the
InvGame and IDG-T experiments validate our decision to
implement our own version of InvGame for this study; dif-
ferences in Mechanical Turk task descriptions and changes
in the population of Mechanical Turk’s users over time are
two potential explanations for the difference in outcomes.

In Figure 5, we compare the prove ratio, the ratio of the
number of players who proved the level to those that loaded
the level, for each level. IDG levels have a significantly
higher prove ratio than IDG-T levels, which is compelling
evidence that showing code helps with loop invariant dis-
covery. Notice that for 4 out of the 12 game levels, the prove
ratio is 0 for all skill levels using IDG-T, but non-0 for IDG.
For the remaining 8 game levels the average IDG ratio is
more than twice as large as the average IDG-T ratio. The
figure also shows that for IDG, players of skill levels 3, 4
and 5 solved 9, 9 and 8 game levels, respectively, whereas
only 7 game levels were proved in total for IDG-T. Hence,
more levels are solved with IDG even if we throw out all of
the IDG players, except those with skill level 3, but keep all
the IDG-T players of any skill level.

A Wilcoxon rank sum test comparing the level prove ra-

IDG IDG−T

m
ult

ipl
y

m
ult

−b
y−

10
00

sq
ua

re
−t

im
es

−2

sq
ua

re
−t

im
es

−c
on

st
cu

be

m
ult

−b
y−

ad
d

su
m

m
at

ion

su
m

m
at

ion
2

bin
ar

y−
pr

od
uc

t

cu
be

2

int
−s

qu
ar

e−
ro

ot

m
ult

−o
f−

6

m
ult

ipl
y

m
ult

−b
y−

10
00

sq
ua

re
−t

im
es

−2

sq
ua

re
−t

im
es

−c
on

st
cu

be

m
ult

−b
y−

ad
d

su
m

m
at

ion

su
m

m
at

ion
2

bin
ar

y−
pr

od
uc

t

cu
be

2

int
−s

qu
ar

e−
ro

ot

m
ult

−o
f−

6

0.00

0.25

0.50

0.75

1.00

Expression
Type

NonInvariant
Tautology

Redundant
DisplacedInductive

Potential
Inductive

Figure 6: Distribution of the types of submitted expressions,
by level. Types are ordered by usefulness, with the most use-
ful type (inductive) at the bottom of the chart.

tios of IDG players versus IDG-T players gives p < 0.001
and an effect size of 0.62, strong statistical evidence that the
distribution of prove ratios for levels in IDG is different than
that distribution for IDG-T.

We analyzed the data presented in Figure 5 for only play-
ers with a max skill of 3 or above, players with a program-
ming skill of “Intermediate” or above and players with math
education of “Bachelors” or above. These graphs were not
notably different and Wilcoxon rank sum tests as described
above all gave p < 0.001. We also compared prove ra-
tios within each programming skill level between IDG and
IDG-T. We ran Wilcox signed rank tests on the prove ra-
tios of each level between IDG and IDG-T for each pro-
gramming skill level, with the alternative hypothesis being
that IDG-T prove ratios are shifted to the left (closer to 0)
than IDG prove ratios. The Holm-adjusted p-values are 0.56
for “Novice”, 0.0098 for “Intermediate” and 0.031 for both
“Advanced” and “Professional”. This indicates that there is
statistically significant evidence that IDG levels overall had
better prove ratios than IDG-T levels for “Intermediate,”
“Advanced” and “Professional” programming skill players.

Distribution of Proposed Expressions Figure 6 shows
that IDG players submitted proportionally more inductive
invariants than IDG-T players, who submitted a greater pro-
portion of non-invariants. Chi-squared tests of the number
of expressions of each type versus game variant show a sta-
tistically significant correlation between the two variables
(p < 0.001, effect size 0.29). Post-hoc chi-squared tests
comparing each expression type versus the total number of
all other expression types across games indicates that there
is a significant difference across game variants and the dis-
tribution of each type of expression (the maximum p-value
was 0.036 and effect sizes ranged from 0.21 to 0.03).

Cheesability A major goal of gamification is to design
games which elicit desired behavior from players. In our
context, we want players to discover expressions that are
potentially useful for proving the guarantee. This includes
inductive and potentially inductive invariants. Noninvari-

194

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

IDG−T

ID
G

Figure 7: Proportion of submitted expressions which were
useful, paired by level, for each game.

0.0

0.2

0.4

0.6

<= Middle School

High School
Bachelors

Masters PhD

Reported highest level of math education

P
ro

po
rt

io
n

of
 u

se
rs

0.0

0.1

0.2

0.3

0.4

None Novice
Intermediate

Advanced
Professional

Reported programming experience

variant IDG IDG−T

Figure 8: Self-reported skill levels for math and program-
ming from the exit survey.

ant, redundant, tautologous and displaced expressions are
all useless because they cannot contribute to proofs and, as
described in Section 5, there are several cheesing strategies
based on useless expressions. The graph shown in Figure 7
compares the percentage of accepted expressions that are
useful between the two games. This demonstrates that IDG
is more effective than IDG-T at eliciting useful expressions
from players.

Player Skill & Completion Data The distribution of self-
reported programming and math skill levels from an exit sur-
vey can be seen in Figure 8. Since players were randomly
assigned to game variants, we expect that the distribution
of self-reported programming and mathematics skills to be
similar. Chi-squared tests showed no significant difference
between IDG and IDG-T players in terms of self-reported
mathematics skill level (p = 0.834), but found a signifi-
cant correlation between game variant and self-reported pro-
gramming skill level (p = 0.013, effect size 0.22). IDG play-
ers reported higher programming skill levels than IDG-T
players, with proportionally fewer IDG players reporting
novice or below programming skill level and proportionally
more reporting skill levels of intermediate or above.

The average task time was 48.7 minutes for IDG and
42.4 minutes for IDG-T; this was found not significant by
a Wilcoxon rank sum test (p = 0.230).

Player Feedback The message window and actionable
feedback in IDG spurred interest for some players, who
asked questions and expressed enthusiasm surrounding
game mechanics in our exit survey. We even received a job
request! Player responses suggest that, in addition to hold-
ing value as a verification tool, games like IDG may have

educational merit, allowing novice programmers to casually
learn about software verification.

8 Discussion, Limitations and Future Work

In this paper, we discussed the concepts underlying IDG and
the experimental results of a comparison between IDG and
IDG-T. In future work we will describe the reasoning en-
gine and related algorithms, which involve many interesting
design decisions. These algorithms maximize the utility of
all submitted expressions as well as attempt to provide play-
ers with the most significant, insightful, goal-directed advice
possible.

While our results seem compelling, it is important to iden-
tify and clarify potential limitations. The first limitation is
that we used a small set of simple benchmark programs was
used to evaluate the two games. Most of these programs
were also used to evaluate InvGame because current soft-
ware verification tools could not solve them, an indicator
of the difficulty of loop invariant discovery. Nevertheless, it
would be interesting to use more complex programs, pos-
sibly written in standard programming languages. Doing so
would also enable the study of how well IDG scales to large
codebases.

It is unclear how different the population of Mechanical
Turk players who played our game is from other populations
that might play the game, including volunteers for a citizen
science project, students or contractors for a large company.
All of these caveats are shared with InvGame’s evaluation.
Our expectation is that there are significant differences, as
informally several undergraduate students were able to solve
all the levels in under an hour and many Mechanical Turk
players seemed to be most interested in finding ways to make
money quickly with minimal effort.

The player completion data suggests that IDG deters
lower-skilled players, as the IDG players who completed
the exit survey had a higher self-reported programming skill
level than those who completed the IDG-T exit survey. Some
of the exit survey responses requested a more in-depth tuto-
rial. Perhaps an interactive, in-depth, tutorial will make the
game accessible to more players. It would be interesting to
design such a tutorial and to evaluate whether it can effective
train low-skill players to effectively play the game.

Organizations interested in using a game like IDG to ver-
ify their code may not want to make their code public. An in-
teresting research question is whether one can design games
that obfuscate the code being verified, but are as effective as
IDG in terms of eliciting loop invariants from players.

IDG and IDG-T can be thought of as two extremes on a
spectrum of program abstractions, neither of which may be
ideal, and there are many hypothetical games in between.
For example, consider a game that resembles IDG-T, but
where input variables are exposed and new traces can be
generated. It may be possible to design such a game in a
way that rules out the cheesing strategies that IDG-T suf-
fers from. This raises many questions: will the types of input
variables be exposed, since the player can now enter new in-
puts? If so, what about the other variables’ types? Is there a
way to provide actionable information and clear goals when

195

the loops and the guarantee are not player viewable? Dis-
covering useful abstractions of programs that are effective
in eliciting loop invariants from players and are amenable to
gamification remains an interesting, unanswered question, to
be explored in future work.

There are many potential applications of software veri-
fication games. One idea is to design games for specific
programming languages that allow regular programmers,
without expertise in formal verification, to effectively rea-
son about programs. Another idea is to design educational
games that target various student populations, starting with
games that allows players familiar with programming to
learn about verification and develop experience with loop
invariants through gameplay. We had several undergraduates
play the game and some of them were able to complete all
of the levels. A more in-depth interactive tutorial would be
especially important for educational applications.

We are interested in exploring the design and evalua-
tion of AI agents who can play IDG and other verification
games, using machine learning, logic programming, deep
learning, etc. Notice that our design of IDG has the very
useful property that the proposed invariants can be anything
at all. That is, the reasoning engine is what guarantees cor-
rectness and nothing an AI agent proposes can lead to un-
soundness. Therefore, AI agents that mostly generate use-
less suggestions, can be used to construct powerful software
verification tools, as long as every once in a while, one of
the AI agents generates useful invariants.

9 Conclusions

There has been recent interest in the design and evaluation
of human computation games where players find loop in-
variants. In fact, recent games have allowed players to find
loop invariants that automated tools cannot. None of these
games show players code and the common wisdom is that
showing code is a bad idea. We introduced IDG, an in-
variant discovery game which does show players code and
our experimental evaluation shows that players of IDG dis-
cover higher quality invariants that prove more programs
correct than players of previous games. IDG supports richer
human-computer interactions, leading to effective human-
in-the-loop systems that are able to augment the ability of
non-experts to find loop invariants. We hope that these re-
sults will encourage future investigation into creating effec-
tive program verification games that can be used to improve
the quality of software.

Acknowledgments

The work discussed in this paper was inspired by the work of
Bounov, DeRossi, Menarini, Griswold and Lerner (Bounov
et al. 2018). We thank them for sharing the code used for
that project.

References

Bounov, D.; DeRossi, A.; Menarini, M.; Griswold, W. G.;
and Lerner, S. 2018. Inferring loop invariants through gam-
ification. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, 1–13. ACM Press.

Bounov, D. 2018. Toward Gamification and Crowdsourcing
of Software Verification. Ph.D. Dissertation, University of
California San Diego, USA.
Bradley, A. R., and Manna, Z. 2007. The calculus of compu-
tation: decision procedures with applications to verification.
Springer.
Chamarthi, H., and Manolios, P. 2019. ACL2s homepage.
http://acl2s.ccs.neu.edu/acl2s.
Chamarthi, H. R.; Dillinger, P. C.; Manolios, P.; and Vroon,
D. 2011. The ACL2 Sedan theorem proving system. TACAS.
Dean, D.; Gaurino, S.; Eusebi, L.; Keplinger, A.; Pavlik,
T.; Watro, R.; Cammarata, A.; Murray, J.; McLaughlin, K.;
Cheng, J.; and Maddern, T. 2015. Lessons learned in game
development for crowdsourced software formal verification.
In 2015 USENIX Summit on Gaming, Games, and Gamifi-
cation in Security Education. USENIX Association.
Deterding, S.; Dixon, D.; Khaled, R.; and Nacke, L. 2011.
From game design elements to gamefulness: defining “gami-
fication”. In Proceedings of the 15th International Academic
MindTrek Conference: Envisioning Future Media Environ-
ments, 9–15. ACM.
Dijkstra, E. W., and Scholten, C. S. 2011. Predicate calculus
and program semantics. Springer.
Fava, D.; Shapiro, D.; Osborn, J.; Schäef, M.; and White-
head, Jr., E. J. 2016. Crowdsourcing program preconditions
via a classification game. In Proceedings of the 38th Inter-
national Conference on Software Engineering, 1086–1096.
ACM.
Gleiss, B.; Kovács, L.; and Robillard, S. 2018. Loop analysis
by quantification over iterations. In LPAR, 381–399.
Hothorn, T.; Hornik, K.; van de Wiel, M. A.; and Zeileis,
A. 2006. A Lego system for conditional inference. The
American Statistician 60(3):257–263.
Kaufmann, M.; Manolios, P.; and Moore, J. S. 2000.
Computer-Aided Reasoning: An Approach. Kluwer Aca-
demic Publishers.
Logas, H.; Whitehead, J.; Mateas, M.; Vallejos, R.; Scott,
L.; Murray, J. T.; Compton, K.; Osborn, J. C.; Salvatore, O.;
Shapiro, D. G.; Lin, Z.; Sanchez, H.; Shavlovsky, M.; Lewis,
C.; Cetina, D.; and Clementi, S. 2014. Xylem: The Code of
Plants. In Proceedings of the 9th International Conference
on the Foundations of Digital Games.
Logas, H.; Vallejos, R.; Osborn, J.; Compton, K.; and White-
head, J. 2015. Visualizing loops and data structures in
Xylem: The Code of Plants. In 2015 IEEE/ACM 4th In-
ternational Workshop on Games and Software Engineering,
50–56.
Navarro, D. 2015. Learning statistics with R: A tutorial
for psychology students and other beginners. University of
Adelaide, Adelaide, Australia. R package version 0.5.
RTI. 2002. The economic impacts of inadequate infrastruc-
ture for software testing. National Institute of Standards and
Technology.

196

