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Teaching proofs is a crucial component of any undergraduate-level program that covers formal rea-

soning. We have developed a calculational reasoning format and refined it over several years of

teaching a freshman-level course, “Logic and Computation”, to thousands of undergraduate students.

In our companion paper [28], we presented our calculational proof format, gave an overview of the

calculational proof checker (CPC) tool that we developed to help users write and validate proofs,

described some of the technical and implementation details of CPC and provided several publicly

available proofs written using our format. In this paper, we dive deeper into the implementation de-

tails of CPC, highlighting how proof validation works, which helps us argue that our proof checking

process is sound.

1 Introduction

Calculational Proof Checker (CPC) is a tool designed to help teach undergraduate computer science

students how to write proofs. In a previous work [28] we presented the calculational proof format used

by CPC and gave an overview of its design and implementation. Here we provide additional details about

CPC’s implementation and provide an argument for CPC’s soundness.

CPC was designed for Manolios’ freshman-level CS2800 “Logic and Computation” course [18],

which uses the ACL2 Sedan (ACL2s) theorem prover [4, 12] to introduce logic and formal reasoning.

ACL2s extends ACL2 with several additional features, including the defdata data definition frame-

work [8], the cgen counterexample generation framework [5–7, 9], a termination analysis system using

calling context graphs [23] and ordinals [20–22] and property-based modeling and analysis. As nearly

anyone who has taught a formal reasoning class can attest to, teaching students how to identify what is

a proof and what is not is challenging, and teaching students how to write proofs is even more so. The

choice of proof format is highly impactful from a pedagogical standpoint, and therefore we put substan-

tial effort into developing ours based on many years of experience teaching CS2800. The proof format

we use in CS2800 is heavily inspired by the calculational proof style popularized by Dijkstra [10, 11].

Dijkstra’s proof format is appropriate here because (1) its linear proofs are easier to check in a local

manner (2) explicit context forces students to identify which parts of the context are used to discharge

each step and (3) it is designed for human consumption rather than for a proof assistant, making these

skills highly transferable.

CPC checks proofs in three phases. Phases 0 and 1 are intended to find problems with the proof in

a way that is aimed at generating actionable and high-quality feedback for the user, and were discussed

in detail in the companion paper [28]. Phase 2 involves translating the proof into one or more ACL2s

theorems with proof-builder [1, proof-builder] instructions and checking these theorems inside of

ACL2s. Therefore, the soundness of CPC reduces to the soundness of the proof-builder and ACL2s.

Our contributions include: (1) a method for translating calculational proofs into ACL2s theorems

checkable by an unmodified ACL2s instance, (2) a proof of soundness of CPC and (3) several exten-
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sions and libraries for ACL2s we developed for CPC. The source code for CPC is available in a public

repository [27].

2 Proof Format

We illustrate our proof format with an example proof of a conjecture, shown in Figure 1. Notice that

the proof document starts with ACL2s definitions of relevant functions required for the proof. We use

ACL2s’ definec to define functions with input and output types. We will discuss definec in more detail

later, but for now one should read the definition (definec aapp (a :tl b :tl) :tl ...) as the definition of

a function aapp that takes as argument two true lists a and b and returns a true list. We also use ACL2s’

property form to state an ACL2 theorem. The first argument to that form describes type constraints on

free variables used in the form; in this case, one can read (property assoc-append (x :tl y :tl z :tl) <body>)

as (defthm assoc-append (implies (and (tlp x) (tlp y) (tlp z)) <body>).

In our proof format, proofs and ACL2s expressions can be arbitrarily interleaved, allowing for exam-

ple a user to define an ACL2s function, write a CPC proof about that function, and then use that proof to

justify the admission of another ACL2s function. Users can also define helper lemmas in ACL2s using

standard ACL2s proof techniques and subsequently apply those lemmas in a CPC proof, as is done in

this example with the ACL2s lemma assoc-append.

The proof starts with a named conjecture “revt-rrev-help” followed by the expression to be

proved. Note that it is not relevant to the proof checker whether one uses Lemma versus Conjecture,

Property or Theorem to name a proof. In this case, we want to prove the conjecture using induction, so

we specify that we are doing a proof by induction and provide the function that gives rise to the induction

scheme we want to use. We then provide a number of subproofs (Induction Case 0 through 2), one for

each proof obligation that induction using the specified scheme gives rise to. In this case, each of these is

an equational reasoning proof, though in general any number of them could be induction proofs instead.

For each equational reasoning proof, we provide an expression to be proved. If the expression is of the

form A→ B→C then we require that the user use the logical rule of exportation to eliminate the nesting

of implications and state (A∧B)→C in the exportation step. This must be done recursively, e.g. it should

apply to an expression of that form in the antecedent of an implication. If desired, the statement may

also be transformed into an equivalent one using propositional logic rules during this step. A contract

completion step (which will be discussed in detail later) comes next, if applicable. The user then writes

out the proof context (the hypotheses of the contract completed statement, if it is an implication) as a

labeled list of context items. Additional context items can be added in the derived context. In Induction

Case 2, derived context items are used to derive the consequent of the induction hypothesis so that it can

be used more easily in the proof. Each derived context item has a list of justifications. If one can derive

nil (false) in a derived context item, there is no need to provide the rest of the sections for that proof.

The proof goal (the consequent of the contract completed statement if it is an implication, or the contract

completed statement itself otherwise) is then listed, followed by a sequence of proof steps. Each proof

step consists of two statements separated by a relation and a set of justifications for that step.

A simplified and compacted version of our proof grammar is shown in Figure 2. For brevity we do

not include the complete grammar of our proof format, but it is available in our repository [27]. Our

companion paper [28] has more examples of proofs written for CPC, both from CS2800 assignments

and Dijkstra’s EWDs [10]. We recommend that interested readers review those example proofs.
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(definec aapp (a :tl b :tl) :tl

(if (endp a)

b

(cons (first a) (aapp (rest a) b))))

(definec rrev (x :tl) :tl

(if (endp x)

nil

(aapp (rrev (rest x)) (list (first x)))))

(definec revt (x :tl acc :tl) :tl

(if (endp x)

acc

(revt (rest x) (cons (first x) acc))))

(property assoc-append (x :tl y :tl z :tl)

(equal (aapp x (aapp y z))

(aapp (aapp x y) z)))

Lemma revt-rrev-help:

(implies (and (tlp x)

(tlp acc))

(equal (revt x acc)

(aapp (rrev x) acc)))

Proof by: Induction on (revt x acc)

Induction Case 0:

;; Elided case where (not (and (tlp x) (tlp acc)))

QED

Induction Case 1:

(implies (endp x)

(implies (and (tlp x) (tlp acc))

(equal (revt x acc)

(aapp (rrev x) acc))))

Exportation:

(implies (and (tlp x) (tlp acc) (endp x))

(equal (revt x acc)

(aapp (rrev x) acc)))

Context:

C1. (tlp x)

C2. (tlp acc)

C3. (endp x)

Derived Context:

D1. (equal x nil) { C1, C3 }

Goal: (equal (revt x acc) (aapp (rrev x) acc))

Proof:

(revt x acc)

== { D1, Def revt }

acc

== { Def aapp }

(aapp nil acc)

== { Def rrev, D1 }

(aapp (rrev x) acc)

QED

Induction Case 2:

(implies (and (not (endp x))

(implies

(and (tlp (cdr x))

(tlp (cons (car x) acc)))

(equal (revt (cdr x) (cons (car x) acc))

(aapp (rrev (cdr x))

(cons (car x) acc)))))

(implies (and (tlp x) (tlp acc))

(equal (revt x acc)

(aapp (rrev x) acc))))

Exportation:

(implies

(and (tlp x)

(tlp acc)

(not (endp x))

(implies

(and (tlp (cdr x))

(tlp (cons (car x) acc)))

(equal (revt (cdr x)

(cons (car x) acc))

(aapp (rrev (cdr x))

(cons (car x) acc)))))

(equal (revt x acc)

(aapp (rrev x) acc)))

Context:

C1. (tlp x)

C2. (tlp acc)

C3. (not (endp x))

C4. (implies (and (tlp (cdr x))

(tlp (cons (car x) acc)))

(equal (revt (cdr x) (cons (car x) acc))

(aapp (rrev (cdr x))

(cons (car x) acc))))

Derived Context:

D1. (tlp (cdr x)) { C1, C3, Def tlp }

D2. (tlp (cons (car x) acc)) { C2, C3, Def tlp }

D3. (equal (revt (cdr x) (cons (car x) acc))

(aapp (rrev (cdr x)) (cons (car x) acc)))

{ D1, D2, C4, MP }

Goal: (equal (revt x acc) (aapp (rrev x) acc))

Proof:

(revt x acc)

== { Def revt, C3 }

(revt (cdr x) (cons (car x) acc))

== { D3 }

(aapp (rrev (cdr x)) (cons (car x) acc))

== { Def aapp, car-cdr axioms }

(aapp (rrev (cdr x)) (aapp (list (car x)) acc))

== { Lemma assoc-append ((x (rrev (cdr x)))

(y (list (car x))) (z acc)) }

(aapp (aapp (rrev (cdr x)) (list (car x))) acc)

== { C3, Def rrev, car-cdr axioms }

(aapp (rrev x) acc)

QED

QED

Figure 1: An example proof written in our proof format. This proof file is available in our repo [27] at

the path example/ind-examples/pass/rrev.proof.
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〈ProofDocument〉 ::= (〈Proof 〉 | 〈SExpression〉)+

〈Proof 〉 ::= 〈Type〉 V : E [Exportation: E ] [Contract Completion: E ] 〈Body〉 QED

〈Body〉 ::= 〈Simple〉 | 〈Inductive〉

〈Simple〉 ::= [Context: 〈Ctx〉] [Derived Context: 〈Dtx〉] Goal: E Proof: 〈Seq〉

〈Inductive〉 ::= Proof by: E [〈ContractCase〉] 〈BaseCase〉+ 〈InductionCase〉*

〈ContractCase〉 ::= Contract Case N: E 〈Body〉 QED

〈BaseCase〉 ::= Base Case N: E 〈Body〉 QED

〈InductionCase〉 ::= Induction Case N: E 〈Body〉 QED

〈Type〉 ::= Conjecture | Property | Lemma | Theorem

〈Ctx〉 ::= (CN: E )*

〈Dtx〉 ::= (DN: E )*

〈Seq〉 ::= B (R {〈Hint〉 (, 〈Hint〉)*} B)*

〈Hint〉 ::= 〈Type〉 V [S ] | CN | DN | Def F | A | algebra | obvious | PL | MP

Figure 2: EBNF grammar for our calculational proofs where, in the ACL2s universe, V is a fresh variable

or natural number, E is an expression, N is a natural number, B is a Boolean expression, R is a binary

relation on Boolean expressions, S is an association list used to represent a valid substitution, F is a

valid function name, A is an axiom, and 〈SExpression〉 is an ACL2s event form. PL and MP stand for

Propositional Logic and Modus Ponens hints respectively. Items in square brackets are optional.
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3 System Architecture

We summarize the architecture of CPC here. We refer interested readers to our companion paper [28]

for a detailed description. The architecture of CPC consists of three primary pieces — the user interface,

the Xtext [31] language support, and the ACL2s backend. Xtext is a framework for building domain-

specific languages, and automatically generates a lexer and parser from our proof format grammar. A

user submits a proof document for checking through one of the CPC interfaces, which is parsed by

Xtext and turned into an Xtext document. Next, an Xtext validator that we developed runs on the Xtext

document, translating it into a form that is usable by the ACL2s backend and invoking that backend. The

ACL2s backend then runs through the proof document and reports any issues back to the Xtext validator,

which sends that information back to the user interface for reporting to the user. A major benefit of using

Xtext in this way is the ability to associate errors detected by the backend with regions of the user’s proof

document. This means that, for example if a step is determined to be incorrect, we can produce error

underlining for that step to help the user localize the error. Xtext also allows us to provide IDE features

like syntax highlighting and code folding with minimal additional effort.

The ACL2s backend of CPC is implemented using our ACL2s Systems Programming methodology,

which we described in an ACL2 Workshop paper last year [29]. That is, the backend is implemented

mainly in “raw Lisp” and makes queries to ACL2s using the API described in our paper. This allows

us to use programming constructs that are not legal in logic-mode ACL2s code, like the Common Lisp

condition system.

As the proof format’s grammar (see Figure 2) specifies, a proof document consists of a sequence

of elements, where each element is either a proof or an event form. Here, an event form is a call to

any of the ACL2s event functions, which are a superset of the ACL2 event functions [1, events]. In our

examples, the most commonly used event forms consist of property, defdata and definec. When CPC

is run on a proof document, it processes each element of the proof document in sequence, evaluating the

element in ACL2s using ld [1, ld] if the element is an event form, or performing proof checking and

generation if the element is a proof. Operating in this way adds some complexity but also makes CPC

more flexible. For example, a user can define an ACL2s function, write a proof about that function, and

then use that proof to justify the admission of another ACL2s function. This would not be possible if we

only supported documents where a set of ACL2s expressions (or a book) ran before all of the proofs. If

an event form evaluation or a proof check fails, CPC will report an error to the user but will continue to

operate on subsequent elements inside the proof document.

As previously stated, CPC performs proof checking in three phases. Phases 0 and 1 are primarily

designed to find problems in a proof document that we can provide actionable and high-quality feedback

for. In Phase 2, CPC will translate the proof file into appropriate ACL2s theorems complete with proof-

builder commands, which are then run through ACL2s to confirm that the proofs in that file are correct.

Our soundness argument is based entirely on Phase 2.

4 Proof Checking

Our prior work [28] describes Phases 0 and 1 in detail. Here we will summarize Phases 0 and 1 and

describe some relevant aspects in more detail.

Phase 0 is a quick, syntactic check of the proof document performed by Xtext. This is provided as

part of the parser that Xtext generates from our grammar. Phase 1 is performed in the ACL2s backend,

and can itself be broken up into performing three checks. The first is to check that the initial setup of the

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____EVENTS
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proof—the contract completion, exportation, context and derived context, all of which we will discuss

in more detail later—is correct. The second is to check that all of the steps (for a non-inductive proof)

or all of the subproofs (for an inductive proof) are correct. For a non-inductive proof, the third step is

to confirm that the conjunction of the steps is sufficient to prove the statement under consideration. For

an inductive proof, the third step is to confirm that the subproofs constitute the proof obligations of the

induction proof that the user specified.

4.1 Guards and Contract Completion

Students in CS2800 are taught to reason about programs. Using ACL2s’ defdata [1, defdata] is helpful

as it is a natural way to introduce students to contract-driven development. Students write all of their

functions using ACL2s’ definec, which requires that the user specify the type of input arguments to

the function as well as the type that the function outputs. definec [1, acl2s::definec] is hooked

into ACL2’s guard system [1, guard] in such a way that a function defined using definec will have

guards that assert that its arguments satisfy their specified types. Recall that the guard obligations for

an expression is the sequence of conditions that must be true to satisfy the guards for every function

call inside that expression. The function contract for a definec function is the statement that if all

arguments to the function in some function call satisfy the specified input types (the input contract for

the function is satisfied), that call evaluates to a value that satisfies the specified output type. When a

definec form is evaluated, in addition to proving termination like defun, ACL2s will prove that the

function’s contract holds and will perform guard verification of the function’s body. Guard verification

is the process of proving that the guard obligations of an expression hold. Note that each defdata type

has a “type predicate” associated with it—a function of one argument that evaluates to true if and only

if that argument is a member of the corresponding type. The function contract theorems that definec

submits are suffixed with -CONTRACT and -CONTRACT-TP.

We require that the statement a user is trying to prove in CPC has an empty sequence of guard

obligations (equivalently, the guard obligations are all satisfied), or if this is not the case, we require that

the user perform contract completion on the statement before proving it. Contract completion refers to the

process of adding appropriate hypotheses to a statement to satisfy its guard obligations. We will also refer

to the resulting statement after contract completion as the contract completion of the original statement.

Performing contract completion on a statement of course changes the logical meaning of the statement.

From a pedagogical standpoint, forcing users to perform contract completion helps us highlight the

correspondence between the statements being proved and the code (the executable bodies of the functions

in the statement). The way that definec works is relevant here—the logical definition of a function

admitted using definec states that a call to the function with inputs that don’t satisfy the function’s input

contract will evaluate to an arbitrary value satisfying the function’s specified return type. A consequence

of this is that a definec function cannot be expanded into its user-provided definition unless it is known

that the function’s input contract is satisfied. It is important to note that this is different from simply

adding guards to a defun, as guards do not affect either the semantics of a function definition or the

theorem prover [1, guard-miscellany]. Enforcing that statements are contract completed eliminates

the possibility of errors or counterexamples due to guard violations (“type errors”).

Note that the order in which hypotheses appear in a conjunction matters, as and in ACL2 is logically

just syntactic sugar for if statements and the type information that a hypothesis provides might be

necessary to satisfy the guards of a subsequent hypothesis. For example, if the original expression

was (implies (in e l) (consp l)) and the ACL2s definition of in requires that (tlp l), the correct contract

completion of the statement is (implies (and (tlp l) (in e l)) (consp l)) and not

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFDATA
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https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GUARD
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GUARD-MISCELLANY
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(implies (and (in e l) (tlp l)) (consp l)).

It would be simpler to enforce that users provide contract completed statements at the get-go, but

having users perform contract completion inside of CPC has some advantages. In particular, having

both the original statement and the contract completed statement inside of CPC allows us to check that

the contract completion was done appropriately, e.g. that only the necessary hypotheses were added to

satisfy the guard obligations. We do not guarantee CPC’s soundness when the user provides a non-trivial

contract completion — one that is not syntactically equivalent to the exported statement (if provided) or

original statement (otherwise). To be clear, the only situation in which a non-trivial contract completion

must be provided is when the original statement has a non-empty sequence of guard obligations, that is,

there is at least one function call in the statement with an input contract that is not provably always true.

If a user provides a non-trivial contract completion, we currently produce a warning notifying the user of

the potential for unsoundness and recommending they update the original conjecture so that it is contract

completed.

An example of a statement with a trivial contract completion is

(implies (and (tlp x) (tlp y)) (equal (app x y) (app y x))). Since the ACL2s definition of app only re-

quires that its arguments are true lists, the two antecedents ensure that the arguments to app are true lists

and both tlp and equal have no guards, the guard obligations for this statement are trivially true and thus

no antecedents need to be added during contract completion.

An example of a statement with a non-trivial contract completion is (implies (in e l) (consp l)),

given the definition of in requires that its second argument is a true list. Since the guard obligations for

this statement (just (tlp l)) are not trivially true, a non-trivial contract completion is required. In this

case, (tlp l) must be added as an antecedent before the (in e l) hypothesis, so the only possible correct

contract completion is (implies (and (tlp l) (in e l)) (consp l)).

4.2 Proof Building Blocks

The basic building block of an equational reasoning proof is a proof step — a statement that two expres-

sions satisfy some relation, justified by one or more hints. In general, a step in an equational reasoning

proof in our format will look like (with α and β being S-expressions and R being either a relation or an

alias for a relation):

α
R { H1, ..., Hn }

β

We say that this step is correct if and only if ACL2s can prove the statement (R α β) under an appro-

priate set of hypotheses and when constrained to an appropriate theory. As we will discuss shortly, the

appropriate set of hypotheses and the appropriate theory both are influenced by the hints H = {H1, ...,Hn}
that the user provided, but also by the context of the proof that the step is contained inside.

Hints

CPC supports several types of hints for justifying reasoning steps. These include Ci and Di which refer

to context and derived context items respectively, def foo which allows one to reference the definition

of a function (allowing one to expand a function call into its body with an appropriate substitution)

and arithmetic which allows many kinds of arithmetic manipulations. Some hints have aliases (for

example, arith is an alias for arithmetic). Other hints only exist for readability—for example, we use

MP (Modus Ponens) to indicate that a step or derived context item is justified by the conclusion of an
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implication after satisfying that implication’s hypotheses, but it does not affect CPC’s checking. Each

hint for a proof step gives rise to zero or more of hypotheses (Hyps), Rules and Lemma instantiations,

used in proving the proof step. Rules here refer to proved theorems in ACL2’s database, which ACL2 can

automatically apply. We define functions hyps(h), rules(h) and instances(h) to be the set of hypotheses,

rules and lemma instantiations (in a format amenable to ACL2) that a hint h gives rise to, respectively.

• Ci: add the expression corresponding to the ith context item as a hypothesis

• Di: add the expression corresponding to the ith derived context item as a hypothesis

• def foo: enable the definition rule(s) for the function foo

• cons axioms: enable the following rules regarding cons: (:rewrite car-cons),

(:rewrite cdr-cons), car-cdr-elim, cons-equal, default-car, default-cdr, cons-car-cdr

• arithmetic: enable the set of rules added by including the arith-5 books

• evaluation: enable all rules of type :executable-counterpart

• lemma foo: add a lemma instance :use hint for foo with the given instantiation (if provided). This

effectively instantiates the given lemma and adds the resulting expression as a hypothesis.

Theories

At different times during both Phases 1 and 2, it is useful to be able to ask ACL2s to prove a statement

while limiting the types of reasoning that it can use. One of the ways we do this is by controlling the set

of rules that ACL2s has access to. We define theories for certain sets of rules that are used inside CPC:

• arith-5-theory is the set of rules that are added by including the "arithmetic-5/top" book in

a vanilla ACL2 instance.

• min-theory consists of ACL2’s minimal theory (which includes only rules about basic built-in

functions like if and cons) plus (:executable-counterpart acl2::tau-system),

(:compound-recognizer booleanp-compound-recognizer), and (:definition not). The for-

mer of these three rules enables ACL2 to perform some type-based reasoning, and the latter two

are often useful for reasoning about propositional logic.

• arith-theory which consists of some basic facts about + and *.

• type-prescription-theory which consists of any rules of type :type-prescription

• executable-theory which consists of any rules of type :executable-counterpart.

• contract-theory which is min-theory plus type-prescription-theory and any rules with

names ending in "CONTRACT" or "CONTRACT-TP". The latter rules correspond to the function con-

tracts for any functions admitted using definec.

• min-executable-theory which is the union of the rules in min and executable.

Type Hypotheses

Almost any proof involving a function defined with definec requires that the function’s input con-

tract is satisfied. In early versions of CPC, we found that this resulted in users needing to repeat-

edly include justifications in their steps corresponding to hypotheses that some free variables in the
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proof statement satisfy some type predicates. Given that users already must perform contract comple-

tion on their proof statement, this felt like an unnecessary burden. Therefore for any step or derived

context item, CPC will automatically include hints that correspond to calls of type predicates. For

example, in Induction Case 2 in the proof example in Section 2, C1. (tlp x), C2. (tlp acc),

D1. (tlp (cdr x)) and D2. (tlp (cons (car x) acc)) are all included “for free” as justifica-

tions of any proof step.

5 Soundness

Once the user has provided a proof that passes Phases 0 and 1, we would like to translate it into an ACL2s

theorem. There are two benefits this brings: (1) we can reduce the soundness of CPC to that of ACL2s

and (2) it enables one to perform a proof in CPC that might be challenging to do in ACL2s and then use

the resulting theorem in ACL2s. The second benefit is not currently exposed in a convenient way to users

of CPC, but we believe it would be easy to implement this feature.

It is important to note that ACL2s contains extensions to ACL2 that require trust tags [1, defttag]

and perform potentially unsafe modifications to ACL2. Therefore, we can only reduce the soundness of

CPC to the soundness of ACL2s, not further to the soundness of ACL2.

Our soundness theorem is as follows: given a proof P without a non-trivial contract completion and

whose proof statement is φ , if CPC validates P then φ is a valid statement in ACL2s, given the same

ACL2s world prior to the validation of P. The witness for our soundness theorem is the ACL2s theorem

that proves φ .

This theorem is easy to prove, as CPC will validate a proof only if it was able to prove that proof’s

statement in ACL2s, using the proof-builder instructions that CPC generates as described below. Note

that we make no claims about completeness—CPC may reject a proof of a valid statement.

5.1 Proof Builder

Generating an ACL2s statement of a CPC theorem is straightforward, but we do not want to simply hand

this statement off to ACL2s for an automatic proof—ACL2s may decide to attempt to take a different

proof approach that requires a different set of lemmas, or may just fail to find a proof. Ultimately our

goal is to determine whether or not the user’s proof is correct, so we should be able to transform it and

its justifications into a theorem that ACL2s can prove. For this reason, we use ACL2’s proof-builder

functionality, which allows us to command the theorem prover’s behavior at a much lower level.

The proof-builder operates in a manner similar to an interactive proof assistant like Coq [3] or Is-

abelle [24]: there is a proof state consisting of a stack of goals, each of which contains a set of hypotheses

and a statement to be proved, and one provides instructions that operate on the goal stack. These instruc-

tions range in granularity, with coarse instructions like prove (attempt to prove the current goal entirely

automatically with ACL2’s full power) to fine instructions like dive (focus on a particular subexpres-

sion in the current statement to be proved). ACL2’s documentation provides information about many of

the available proof-builder instructions [1, proof-builder-commands]. For CPC we developed several

new proof-builder instructions, many of which are variants of existing instructions that succeed where

the existing instructions would fail. For example, :retain-or-skip [1, acl2-pc::retain-or-skip]

is exactly like the built-in :retain [1, acl2-pc::retain] instruction, except that it will succeed even

when all of the existing hypotheses are retained (producing no change in the proof-builder state). Many

instructions have similar behavior that is desirable when a human is interacting directly with the proof-

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFTTAG
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____PROOF-BUILDER-COMMANDS
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2-PC____RETAIN-OR-SKIP
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2-PC____RETAIN
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builder, but that is not when automatically generating instructions. These new proof-builder instructions

are available in the ACL2 distribution, inside books/acl2s/utilities.lisp. All of the new instruc-

tions are listed below:

• :claim-simple: exactly like :claim, except that it does not automatically perform hypothesis

promotion on the newly created goal.

• :pro-or-skip: exactly like :pro, except that it will succeed even when no promotion is possible.

• :drop-or-skip: exactly like :drop, except that it will succeed even when there are no top-level

hypotheses and no arguments are provided.

• :retain-or-skip: exactly like :retain, except that it will succeed even when all of the existing

hypotheses are retained.

• :cg-or-skip: exactly like :cg, except that it will succeed even when the specified goal to change

to is the same as the current goal.

• :instantiate: instantiate a theorem as a hypothesis under the given substitution.

• :split-in-theory: exactly like :split, except that a theory can be provided to use instead of

minimal-theory.

• :by: prove a goal using exactly an existing lemma under a given substitution.

5.2 Instruction Generation Algorithms

We will now describe how we generate proof-builder instructions for steps and derived context items,

equational reasoning proofs, and inductive proofs. In the below algorithm listings, we will use a type-

writer font face like this to denote S-expressions that we generate. Some additional comments on

notation:

• x++ y denotes the sequence produced by appending the sequences x and y. If y is a set, then it is

first transformed into a sequence by enumerating the elements of y in an arbitrary order.

• An ACL2s statement x is a type predicate call if and only if it is a function call with one argument

and the function name is known by defdata to be a type predicate.

• Let hid(x) be an identifier used by the proof-builder to refer to the hypothesis corresponding to the

context or derived context item x.

• Let rules(x) be the set of rules that a hint x gives rise to.

• Let instances(x) be the set of lemma instantiations (in a format amenable to ACL2) that a hint x

gives rise to.

• IndObsAndNames(stmt, indterm) calls ACL2’s proof-builder to determine what goals are created

when one tries to prove stmt by performing an induction on indterm. The output is a set of tuples

(obs,name) where obs is an ACL2s statement expressing one of the created goals and name is the

name that ACL2s gave to that goal.

In the below algorithms, we elide the complexity of matching up the names that the proof-builder

gives to the hypotheses with the names of context items that the user gave in the proof.
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;; A step

α
R { H1, ..., Hn }

β
;; A derived context item

Dn. γ { H1, ..., Hn }

Figure 3: The general form of a proof step and a derived context item.

Hints to Instructions

The processes of generating proof-builder instructions for a step and for a derived context item are

similar, so we will describe them together. Figure 3 shows the general form of a step and a derived context

item. Using names from Figure 3, we will define the equivalent expression of a step to be (R α β) and

the equivalent expression of a derived context item to be γ . Algorithm 1 is the corresponding algorithm

for this process. We pass the equivalent expression of the step or derived context item into the stmt input

of the algorithm. Let EE be the equivalent expression of the step or derived context item in question.

The instructions that we generate should do the following: use :claim-simple to add a hypothesis

that the equivalent expression of the step or derived context item holds, then prove that this hypothesis

holds using the justifications that the user provided.

We first generate a claim-simple instruction with EE as the statement to cause the proof-builder to

add EE as a hypothesis in the current goal. This also results in the creation of a new goal to prove EE

given the current set of hypotheses (before EE was added). We pass :hints :none to the claim-simple

instruction so that ACL2s does not try to prove this new goal automatically. Then, we generate a cg in-

struction to change to the newly generated goal. Next, we calculate the guard obligations that this goal

would have given the current context and generate a claim instruction with those obligations as its state-

ment. This claim instruction will result in ACL2s trying to prove that the statement holds automatically.

Next, based on H1, ...,Hn, we determine which context and derived context items should be available

when proving EE . We then generate a retain-or-skip instruction with appropriate arguments to only

retain the appropriate context and derived context items. We then determine based on H1, ...,Hn what

ACL2 rules should be available. We generate a in-theory instruction with appropriate arguments to

enable and disable rules appropriately. Finally, we generate the instruction (:finish :bash), which

tells ACL2s to attempt to prove the current goal while limiting its abilities. If ACL2s is unable to prove

the goal, it will raise an error and the proof attempt will result in a failure.

Equational reasoning proofs

Generating instructions for an equational reasoning proof is fairly straightforward; the algorithm is shown

in Algorithm 2.

We start with :pro-or-skip to expand the proof statement’s implication into antecedents and a con-

sequent (if it is an implication). Then, we generate instructions to add a hypothesis for each derived

context item and prove that it holds given the provided justifications. We do something very similar for

each proof step. Then, we :demote to turn the goal and hypotheses into an ACL2 implication statement

before repeatedly calling (:split-in-theory min-executable-theory) until the goal has been dis-

charged. We use :split-in-theory (and therefore :split) here as it is a convenient way to invoke

ACL2 with very limited reasoning ability (just simplification, preprocessing, and whatever rules are in

the given theory).
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Algorithm 1: proof-builder instruction generation for a step or derived context item

1 Function ProveUsingHints(stmt, hints, ctx)
Input: stmt is the statement to prove, hints is the set of hints the user provided, and ctx is the

set of context and derived context items it should be proved under.

2 I← [];
/* Add stmt as a hypothesis and as a new goal, do not attempt to prove it

automatically, and switch to the new goal */

3 I← I ++[(:claim-simple stmt... :hints :none),:cg];
4 hyps←{x | x ∈ hints∧ x is a context or derived context hint };
5 contracts← GO((

∧
h∈hyps h)→ stmt);

6 if contracts 6= true then
/* Add contracts as a hypothesis and as a new goal & prove it automatically. */

7 I← I++[(:claim contracts...)];

8 typectx←{x | x ∈ ctx∧ x is a type-predicate call };
9 contractsidx← a set containing the identifier of the contracts hypothesis if contracts 6=

true or /0 otherwise;

/* Only keep the hypotheses we should have given the hints the user provided */

10 I← I ++[(:retain-or-skip {hid(x) | x ∈ hyps∪ typectx∪ contractsidx})];
11 hintrules←

⋃
{rules(x) | x ∈ hints};

/* Ensure that only the rules that we should have access to given the user’s hints

are available */

12 I← I ++[(:in-theory (union-theories (theory ’contract-theory) hintrules))];
13 lemmainstances←

⋃
{instances(x) | x is a hint for Dxi};

/* Add any lemma instances that the user described in the hints */

14 I← I ++{(:instantiate x) | x ∈ lemmainstances};
/* Ask ACL2 to automatically prove this goal without induction, and then reset to

the original theory */

15 I← I ++[(:finish :bash),:in-theory];
16 return I
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Algorithm 2: proof-builder instruction generation for a non-inductive conjecture

1 Function EquationalReasoningTranslate(C, D, R, P, H)
Input: C and D are the sets of all non-derived context and derived context items for a proof

respectively. R, P and H are the relations, step statements and hints for the proof’s

proof steps, indexed from the start of the proof. This function only operates on

equational reasoning proofs.

2 I← [];
/* Perform exportation and expand implication into hyps/conclusion */

3 I← I ++[:pro-or-skip];
/* Generate instructions for each derived context item */

4 foreach i ∈ [1..m] do

5 stmt← the proof statement associated with Dxi;

/* Do not include any later derived context items in the context used to prove

Dxi */

6 ctx←C∪{Dx j | j ∈ [1..i−1]};
7 I← I++ProveUsingHints(stmt, hints, ctx);

/* Generate instructions for each step */

8 foreach i ∈ [1..n] do

9 stmt← ( RiPiPi+1 );

10 ctx←C∪D;

11 I← I++ProveUsingHints(stmt, H_i, ctx);

/* Turn the hypotheses and goal into an implication */

12 I← I ++[:demote];
/* Repeatedly call :split-in-theory until the proof is successful or we reach a

fixpoint */

13 I← I ++
[(:finish (:repeat-until-done (:split-in-theory min-executable-theory)))];

14 return I
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Inductive proofs

The algorithm for generating proof-builder instructions for inductive proofs is provided in Algorithm 3.

Assume we have a proof by induction without a non-trivial contract completion. This can be thought

of as several separate proofs, one for each induction proof obligation. For each of these subproofs, we

will generate a separate ACL2s proof, complete with proof-builder instructions. Then, we generate an

ACL2s proof for the top-level induction proof with instructions to perform a proof by induction using the

induction scheme that the user specified, and generate instructions that discharge each proof obligation

using the corresponding generated ACL2s proof. This approach requires that CPC determine the order of

the subgoals that ACL2s will generate when asked to perform an induction proof with the given induction

scheme so that we can map up the subproofs that the user performed with these subgoals, and thus in

the instructions for each subgoal we can refer to the appropriate generated ACL2s proof. We generate

these subgoals by using the ACL2 function state-stack-from-instructions, which allows one to get

the state of the proof builder after running a sequence of instructions, and then reuse some existing CPC

code to find a bijection between these subgoals and the induction proof cases that the user provided.

Once we have generated proof-builder instructions for an inductive proof, we generate defthms with

proof-builder instructions for all of its subproofs. We then generate an encapsulate statement and insert

all of the subproof defthms in the encapsulate as local. The inductive proof itself is not inserted into a

local and is thus exported from the encapsulate. We do not want to export the subproof defthms, as

they are only needed to show that the top-level inductive proof theorem holds.

6 Related Work

Our previous work [28] contains a longer discussion of works surrounding the use and mechanical veri-

fication of calculational proofs. Below we provide a summary of that discussion, as well as some related

work in ACL2 in particular.

Calculational proofs were popularized by in the early 1990s by Dijkstra and Scholten [11], Gasteren

[13] and Gries [14]. A series of works [2, 15, 16, 25] by Robinson, Stables, Back, Grundy and Wright

resulted in the development of structured calculational proofs, an extension of the calculational proof

style that allows for the hierarchical decomposition of proofs. This format reduces to natural deduc-

tion, but maintains the benefits of calculational proofs while also allowing for improved readability and

browsability of proofs.

Manolios argued for the formalization of calculational proofs and their mechanized checking in

2000 [19]. Mizar [26] is a system for checking calculational proofs first developed in the 1970s. Several

systems inspired by Mizar have been developed since, including Isabelle/Isar [30] and Leino et. al’s

poC extension to Dafny [17]. These systems typically follow Mizar’s format in not requiring the user to

explicitly state the proof context. Mizar has only lightweight support for automated reasoning in prov-

ing that proof steps hold and only allows equality relations inside of proofs. Isar allows for arbitrary

relations and provides access to Isabelle’s powerful reasoning capabilities, like simp for Isabelle’s sim-

plifier, and auto for a combination of several tools [17]. poC only allows a predefined set of relations but

is as declarative as Mizar is, while providing more powerful automated reasoning with its SMT solver

backend.
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Algorithm 3: proof-builder instruction generation for an inductive conjecture

1 Function InductiveTranslate(M, stmt, indterm, PC)
Input: This function only operates on inductive proofs. M is a function mapping the names

of the proof cases of this inductive proof to corresponding ACL2 theorems. stmt is

the proof statement for this inductive proof, and indterm is the induction term. PC is

the set of proof cases given for this inductive proof, where name(PCi) is the name of

PCi and stmt(PCi) is the proof statement for PCi.

/* Generate the proof obligations an induction on indterm will give rise to */

2 obsnames← IndObsAndNames(stmt, indterm);

/* Perform exportation, expand implication into hyps/conclusion, perform induction

*/

3 I← [:pro-or-skip,(:induct indterm)];
4 Attempt to find an injective mapping from obsnames to PC, where an element

(obs,name) ∈ obsnames is mapped to an element PCi ∈ PC iff the conjunction of the

hypotheses of obs after exportation are propositionally equivalent to the conjunction of the

hypotheses of stmt(PCi) after exportation.;

5 if no such mapping exists then

6 raise an error;

7 inj← the injective mapping;

8 foreach (obs,name) ∈ obsnames do

9 injPC← inj((obs,name));
/* Change to the induction obligation, use the existing proof to discharge it

*/

10 I← [(:cg-or-skip name),(:finish :demote (:by M(name(injPC))))];

11 return I
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7 Conclusion and Future work

We have presented an argument for the soundness of CPC, based on its translation of calculational proofs

into ACL2s theorems with proof-builder instructions. We are interested in seeing how CPC can be used

by “professional” users to design their proofs, and have some ideas about functionality that would be

appropriate for these users. In particular, we see the need to provide more automation to such users, for

example automatic generation of context and induction proof obligations or a “bash” mode for eliding

simple subproofs like contract cases in inductive proofs. We hope to continue to extend and improve

CPC based on requests from students and the community, and plan on continuing to use it to help teach

undergraduates how to write proofs.
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